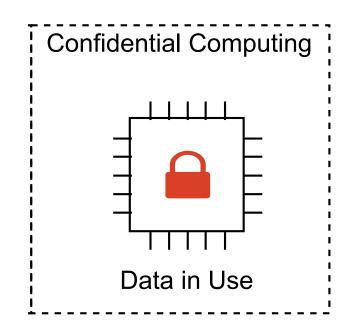


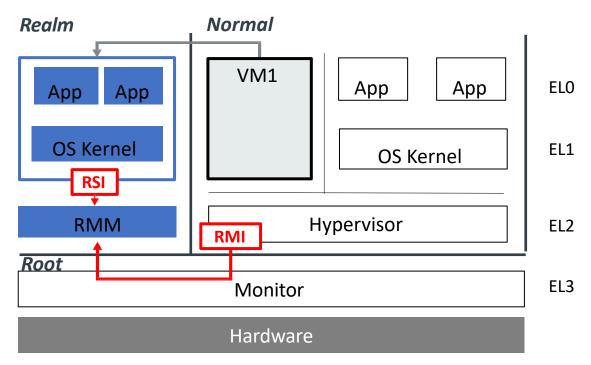
SHELTER: Extending Arm CCA with Isolation in User Space

<u>**Yiming Zhang**</u>^{1,2*}, Yuxin Hu^{1*}, Zhenyu Ning^{3,1}, Fengwei Zhang^{1 \sim},

Xiapu Luo², Haoyang Huang¹, Shoumeng Yan⁴, Zhengyu He⁴

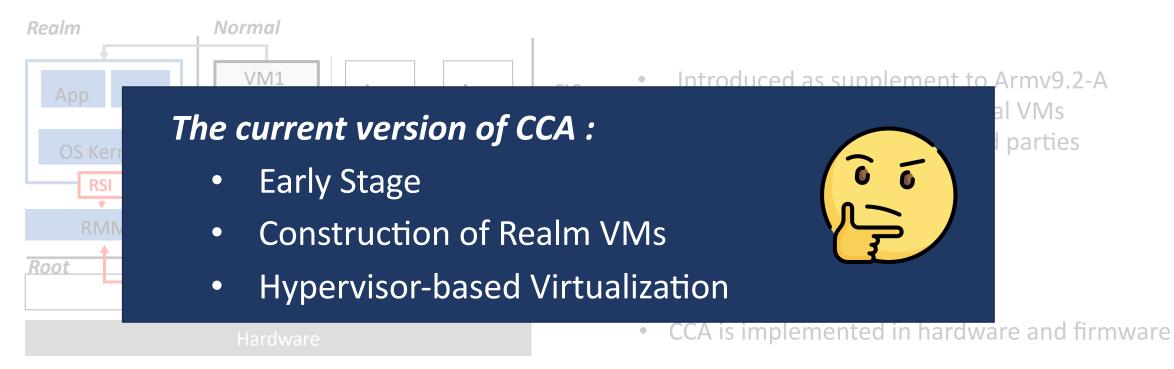
1Southern University of Science and Technology, 2The Hong Kong Polytechnic University, 3Hunan University, 4Ant Group





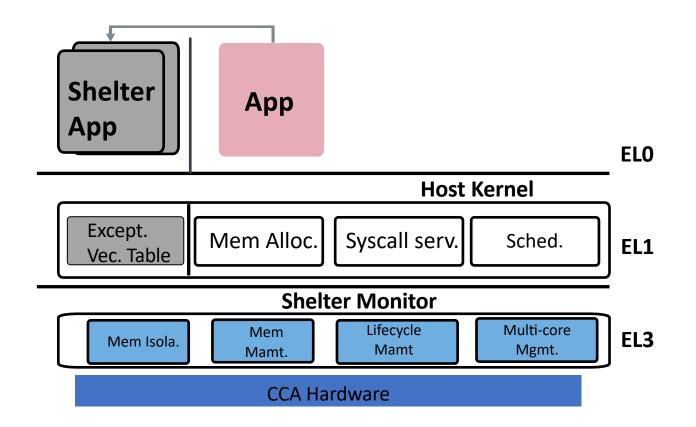
Confidential Computing

- Hardware-assisted security design
- Cloud and Edge devices
- Intel TDX, AMD SEV, Arm CCA


Arm Confidential Compute Architecture (CCA)

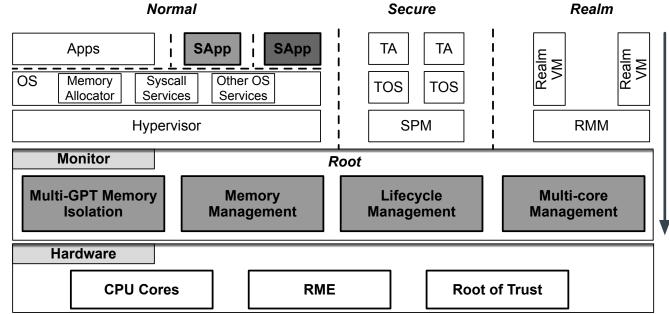
RME: Realm Management Extension RMM: Realm Management Monitor RMI: Realm Management Interface RSI: Realm Services Interface

- Introduced as supplement to Armv9.2-A
- Two added additional worlds
 Secure -> Secure & EL3 Root
 Normal -> Normal & Realm
- CCA is implemented in hardware and firmware


Arm Confidential Compute Architecture (CCA)

RME: Realm Management Extension RMM: Realm Management Monitor RMI: Realm Management Interface RSI: Realm Services Interface

Motivation

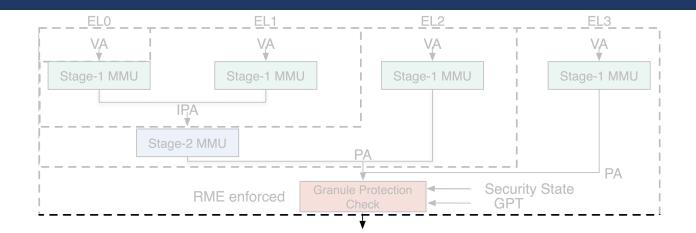

- Cooperating with CCA hardware to provide user-level isolation
- Complement to CCA's Realm VM architecture

Threat Model & Assumptions

- An attacker can compromise Host OS, hypervisor, or privileged software in Secure, and Realm world (e.g., SPM or RMM)
- The Monitor is trusted and the hardware is correctly implemented
- Physical/Side-channel/denial-of-service attacks are out of scope
- Assuming remote attestation support and secure boot

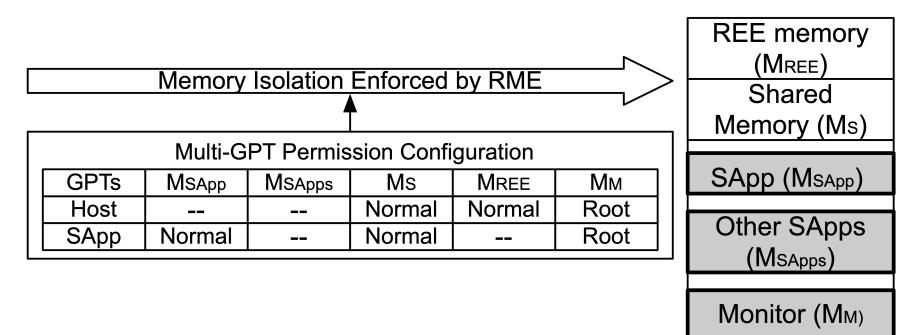
- SHELTER App (SApp)
 - Running on Normal World ELO
- Host OS
 - Non-security responsibilities
- Shelter Monitor
 - In Root world
 - Security responsibilities
- CCA hardware feature
 - Realm Management Extension (RME)

Granule Protection Check (GPC)

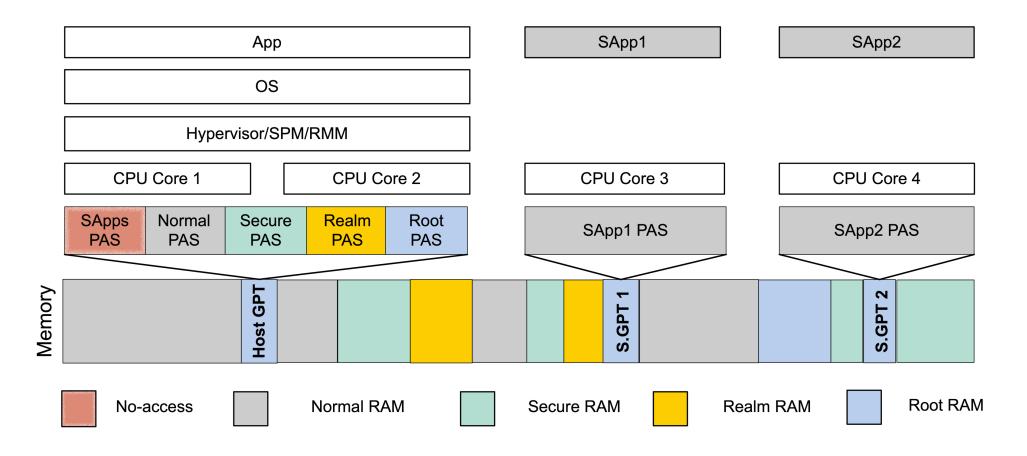

- RME enforced isolation is managed through a new Granule Protection Table (GPT)
- GPT is controlled by the Monitor in EL3
- GPT specifies what physical address spaces (PAS) a memory page belongs to

Security state	Normal PAS	Secure PAS	Realm PAS	Root PAS	
Normal	\checkmark	Х	х	×	
Secure	\checkmark	\checkmark	×	×	
Realm	\checkmark	×	\checkmark	×	
Root	\checkmark	\checkmark	\checkmark	\checkmark	
EL0	<u>EL1</u>		EL2	<u>_EL3</u>	
VA	VA	I I	VA	VA	
Stage-1 MMU	Stage-1 MML	J I Stage	e-1 MMU	Stage-1 MMU	
Sta	ge-2 MMU	PA			
	RME enforced	Granule Protection Check	Security S	Etate PA	

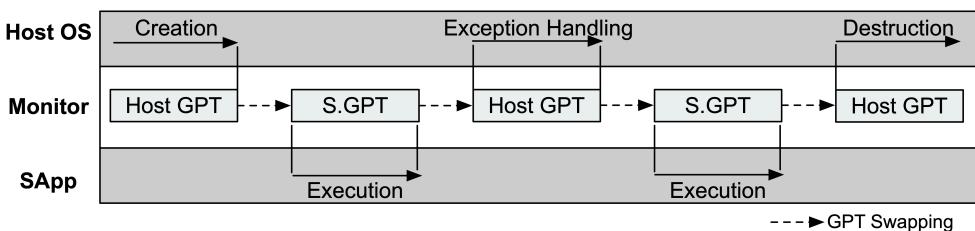
Granule Protection Check (GPC)


- RME enforced isolation is managed through a new Granule Protection Table (GPT)
- GPT is controlled by the Monitor in EL3
- GPT specifies what physical address spaces (PAS) a memory page belongs to

It is not satisfied with the goal of isolating memory between SApps and other privileged software in Normal, Secure, and Realm world.


Multi-GPT Memory Isolation

- Maintain multiple GPTs in EL3 Monitor
- Divide the physical address space (PAS) for different programs


Multi-GPT Memory Isolation

• Establishing address-space-per-core for each SApp and other code region

Multi-GPT Memory Isolation

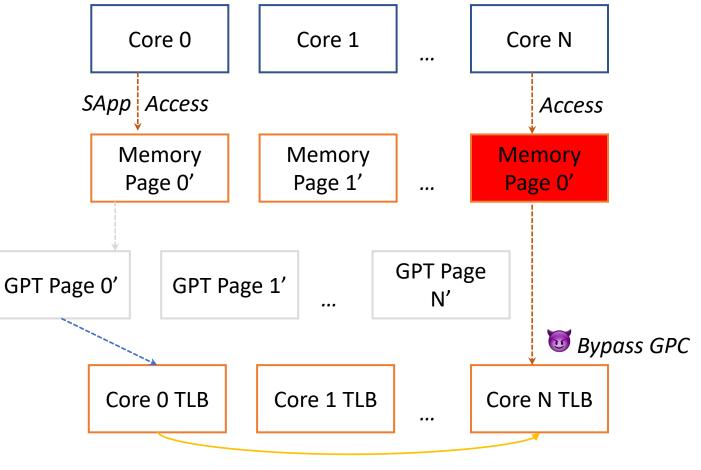
• The Monitor dynamically controls the access permissions of different programs

Processor Core

Performance Optimization

- New GPT construction causes long startup latency for SApps
 - **Root cause:** Shelter needs to add granule information containing a layout of the entire main memory for the new GPT and measure each GPT entry

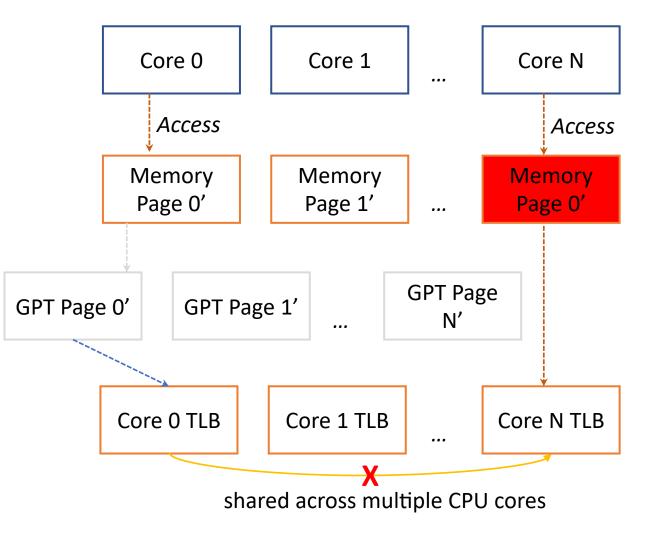
Performance Optimization


- New GPT construction causes long startup latency for SApps
 - **Root cause:** Shelter needs to add granule information containing a layout of the entire main memory for the new GPT and measure each GPT entry

Multi-GPT Management									
GPTs	MSApp	MSApps	Ms	Mree	Мм				
Host			Normal	Normal	Root				
SApp	Normal		Normal		Root				
Copy to create new SApp GPT									
▲									
Template GPT									

*Using shadow GPT, a template with copy and update to speed up SApp creation

TLB-based GPT attack


- GPT entries are permitted to be cached in TLB as part of TLB entry
- GPT information in a TLB is permitted to be shared across multiple CPU cores

Different GPTs are shared across CPU cores

Defend against TLB-based GPT attacks

- TLB invalidation during switches and GPT modifications
- Disable the shareable property of TLB

Some Execution Features

- Memory management
 - Contiguous physical memory pool
 - Ensure multiple SApps do not have memory overlap
 - SApp Page table is isolated

Some Execution Features

- Memory management
 - Contiguous physical memory pool •
 - Ensure multiple SApps do not have memory overlap •
 - SApp Page table is isolated •
- Syscall & lago attack checks
- Interrupt & Signal
- Multi-threaded synchronization primitive

SHELTER: Extending Arm CCA with Isolation in User Space

Yiming Zhang^{1,2,3,*}, Yuxin Hu^{1,2,*}, Zhenyu Ning^{4,1}, Fengwei Zhang^{2,1,†}, Xiapu Luo³, Haoyang Huang^{1,2}, Shoumeng Yan⁵, Zhengyu He⁵

¹Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology ²Department of Computer Science and Engineering, Southern University of Science and Technology ³Department of Computing, The Hong Kong Polytechnic University ⁴College of Computer Science and Electronic Engineering, Hunan University 5 Ant Group

tems

Compu

Armv9.2.

Realm world.

or modification,

Abstract

The increasing adoption of confidential computing is providing individual users with a more seamless interaction with numerous mobile and server devices. TrustZone is a promising security technology for the use of partitioning sensitive private data into a trusted execution en TEE). Unfortunately, third-party develor to TrustZone. This is been such security application Moreover, TrustZo ties affecting Tru the entire syster Advanced ' cently new o (CCA) creat world for co dentiality a ily targets t provide use we present S mary Realm party develope in userspace. SH CCA hardware pi hardware-based isol ware workloads to trust privileged software (e.g., tru sor). We have implemented and eva results demonstrated that SHELTER guarantees the security of applications with a modest performance overhead (<15%) on real-world workloads

1 Introduction

The increasing adoption of confidential computing is providthe stadiction for an orbit of more second and

devices [14]. Meanwhile, as vast numbers of devices are being widely deployed and connected, a host of new security vulnerabilities and attacks are breaking out [33]. It is critical that these devices provide a high level of security and privacy to protect sensitive data. On Arm platforms, TrustZone [26] supports such an ability that enforces system-wide isolation using two different physical address spaces (PAS) named Normal world and Secure world for untrusted and trusted software. pectively

> ough TrustZone enables systems to protect sensitive the TEE, there still exist two major limitations to i) Third-party developers have limited accessibility ne. This is because TEE vendors need to rigorte such security applications to prevent the de-Trusted Applications (TA) that may import exnerabilities [11]. These processes increase the for deploying new TAs, conflicting with the et trend of computing services [46]. (ii) The e for commercial TrustZone-based systems is e there are increasing vulnerabilities affecting sted OSes, according to recent studies [33, 34]. defense mechanism based on privilege division chitecture called Exception Levels (EL0-EL3). For e, in the Secure world, Secure Exception Level 0 (i.e., runs TAs, S.EL1 runs the trusted OS, and S.EL3 runs e. However, once a vulnerability affecting ploited, the entire TrustZone-based sysbe compromised [33].

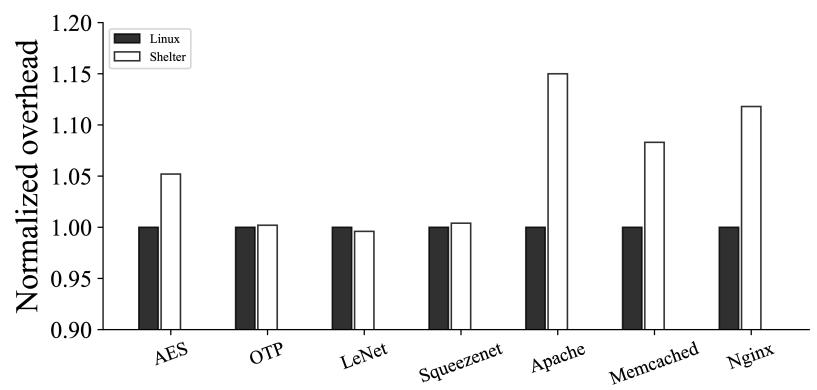
d a new system called Confidential [23] to protect data in use on utation in a new PAS named code and data from access n Management Monitor (RMM) [24] like a hypervisor. RMM can instantiate multiple Re. e Realm world enforced by a new hardware primit aled Real Management Ex-

Shelter Implementation

- Functional prototype implementation
 - FVP Base RevC-2xAEMvA with RME-enabled features
 - TCB: ATF with **2k SLoCs additions**

Shelter Implementation

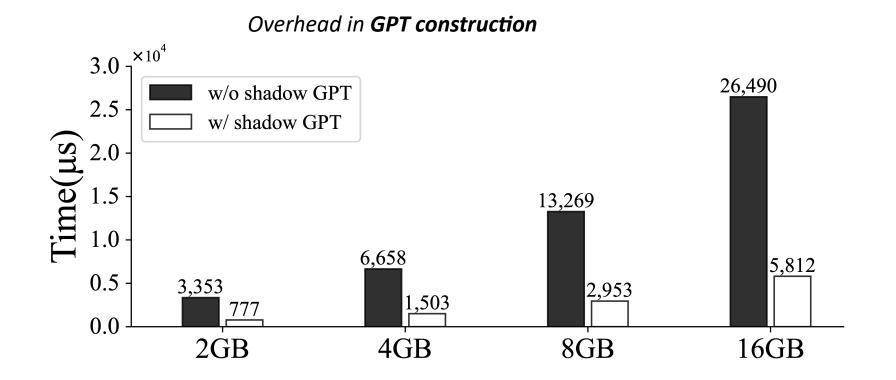
- Functional prototype implementation
 - FVP Base RevC-2xAEMvA with RME-enabled features
 - TCB: ATF with **2k SLoCs additions**
- Official CCA software stacks
 - TCB: ATF + TF-RMM (released date 2022/11/09)
 - TF-RMM(v0.2.0) is around 8.2k SLoCs
- TCB comparison with CCA
 - 2k vs 8k SLoCs


Performance Evaluation

- No commercial hardware supporting CCA is available on the market
 - FVP Simulator is **not cycle accurate**

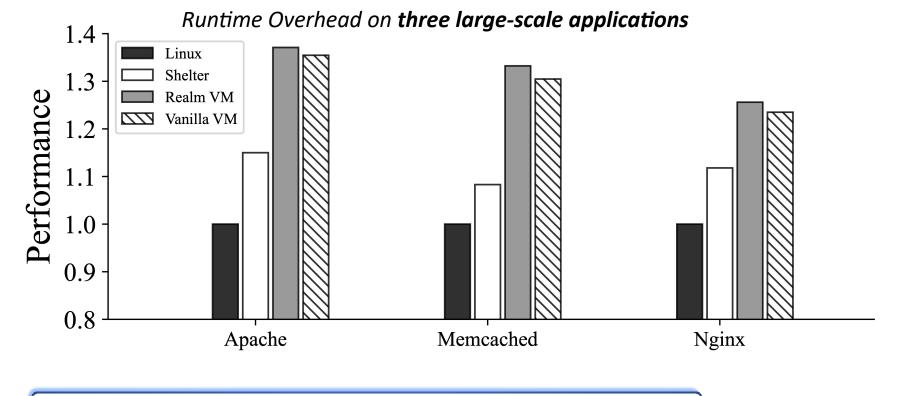
Performance Evaluation

- No commercial hardware supporting CCA is available on the market
 - FVP Simulator is **not cycle accurate**
- GPT-analogue in Armv8-A Juno Board
 - Mimic all **GPT in-memory** operations
 - Replace the GPT-related registers with idle EL3 registers
 - Invalidate all TLBs instead of TLB GPT invalidation instructions (e.g., TLBI PAALLOS)
 - The other functionality are the same as those on the FVP


Application Benchmarks

Runtime Overhead on real-world programs

SHELTER incurs <15% runtime-overhead on real-world workloads compared with Linux


Performance Optimization

✓ With shadow GPT, reducing overhead on average of 77.5% in SApp Creation

Comparison with CCA's VM-based approach

• A basic CCA VM-based performance prototype with same GPT-analogue methodology and a Realm-context simulation

✓ Avg. SHELTER 11.7% vs CCA Realm VM 32.0%

Conclusion

- Shelter leverages CCA hardware for a new creation of user-level isolated environment
 - complementary to CCA's primary Realm VM-style architecture
 - A smaller TCB
 - Lower performance overhead
 - No hardware modification for compatible platforms, including mobile and server
- Open Source
 - https://github.com/Compass-All/Shelter

Thanks for listening! Q & A yming.zhang@connect.polyu.hk