
Revisiting ARM Debugging Features: Nailgun
and its Defense

Zhenyu Ning , Chenxu Wang , Yinhua Chen, Fengwei Zhang , and Jiannong Cao

Abstract—Processors nowadays are consistently equipped with debugging features to facilitate program analysis. Specifically, the ARM

debugging architecture involves a series of CoreSight components and debug registers to aid the system debugging, and a group of

debug authentication signals are designed to restrict the usage of these components and registers. Meanwhile, the security of the

debugging features is under-examined since it normally requires physical access to use these features in the traditional debugging

model. However, ARM introduces a newdebuggingmodel that requires no physical access sinceARMv7,which exacerbates our concern

on the security of the debugging features. In this article, we perform a comprehensive security analysis of the ARM debugging features

and summarize the security implications. To understand the impact of the implications, we also investigate a series of platformswith

ARM-A architecture in different product domains (i.e., development boards, IoT devices, cloud servers, andmobile devices).We consider

that the analysis and investigation expose a new attacking surface that universally exists in platformswith ARM-A architecture. To verify

our concern, we further craft NAILGUN attack, which obtains sensitive information (e.g., AES encryption key and fingerprint image) and

achieves arbitrary payload execution in a high-privilegemode from a low-privilegemode via misusing the debugging features. This attack

does not rely on software bugs, and our experiments show that almost all the platformswe investigated are vulnerable to the attack. Our

analysis also indicates that ARM-R and ARM-M platformsmay suffer from the same issue. To defend against the attack, we discuss

potential mitigations from different perspectives in the ARMecosystem. Finally, a practical defensemechanism based on ARM

virtualization technology is presented, and the evaluation result shows that our defense can prevent NAILGUN with a negligible

performance penalty.

Index Terms—ARM debugging architecture, trusted execution environment, privilege escalation, virtualization

Ç

1 INTRODUCTION

MOST of the processors today utilize a debugging architec-
ture to facilitate on-chip debugging. For example, the x86

architecture provides six debug registers to support hardware
breakpoints and debug exceptions [1], and the Intel Processor
Trace [2] is a hardware-assisted debugging feature that garners
attention in recent research [3], [4]. The processors with ARM
architecture have both debug and non-debug states, and a
group of debug registers is designed to support the self-host
debugging and external debugging [5], [6]. Moreover, ARM
also introduces hardware components, such as the Embedded
Trace Macrocell [7] and Embedded Cross Trigger [8], to sup-
port various hardware-assisted debugging purposes.

Correspondingly, the hardware vendors expose the
aforementioned debugging features to an external debugger

via on-chip debugging ports. One of the most well-known
debugging ports is the Joint Test Action Group (JTAG) port
defined by IEEE Standard 1149.1 [9], which is designed to
support communication between a debugging target and an
external debugging tool. With the JTAG port and external
debugging tools (e.g., Intel System Debugger [10], ARM DS-
5 [11], and OpenOCD [12]), developers can access the mem-
ory and registers of the target efficiently and conveniently.

To authorize external debugging tools in different usage
scenarios, ARM designs several authentication signals. Spe-
cifically, four debug authentication signals control whether
non-invasive debugging or invasive debugging (see Sec-
tion 2.2) is prohibited when a target processor is in a non-
secure or secure state. For example, once the secure invasive
debugging signal is disabled via the debug authentication
interface, the external debugging tool will not be able to halt
a processor running in the secure state for debugging pur-
poses. In this management mechanism, the current privilege
mode of the external debugger is ignored.

Although the debugging architecture and authentication
signals have been presented for years, the security of them
is under-examined by the community since it normally
requires physical access to use these features in the tradi-
tional debugging model. However, ARM introduces a new
debugging model that requires no physical access since
ARMv7 [5]. As shown in the left side of Fig. 1, in the tradi-
tional debugging model, an off-chip debugger connects to
an on-chip Debug Access Port (DAP) via the JTAG interface,
and the DAP further helps the debugger to debug the on-
chip processors. In this model, the off-chip debugger is the
debug host, and the on-chip processors are the debug target.

� Zhenyu Ning, Yinhua Chen, and Fengwei Zhang are with the Southern
University of Science and Technology, Shenzhen 518055, China.
E-mail: {ningzy, zhangfw}@sustech.edu.cn, 11612127@mail.sustech.edu.cn.

� Chenxu Wang is with the Southern University of Science and Technology,
Shenzhen 518055, China, and also with the Hong Kong Polytechnic Uni-
versity, Hong Kong. E-mail: 11711715@mail.sustech.edu.cn.

� Jiannong Cao is with the Hong Kong Polytechnic University, Hong Kong.
E-mail: csjcao@comp.polyu.edu.hk.

Manuscript received 18 December 2020; revised 22 November 2021; accepted 22
December 2021. Date of publication 31 December 2021; date of current version 16
January 2023.
This work was supported in part by the National Natural Science Founda-
tion of China under Grants 62102175 and 62002151, and Science Technol-
ogy and Innovation Commission of Shenzhen Municipality under Grant
SGDX20201103095408029.
(Corresponding author: Fengwei Zhang.)
Digital Object Identifier no. 10.1109/TDSC.2021.3139840

574 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-7763-1079
https://orcid.org/0000-0001-7763-1079
https://orcid.org/0000-0001-7763-1079
https://orcid.org/0000-0001-7763-1079
https://orcid.org/0000-0001-7763-1079
https://orcid.org/0000-0001-7039-033X
https://orcid.org/0000-0001-7039-033X
https://orcid.org/0000-0001-7039-033X
https://orcid.org/0000-0001-7039-033X
https://orcid.org/0000-0001-7039-033X
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0002-2725-2529
https://orcid.org/0000-0002-2725-2529
https://orcid.org/0000-0002-2725-2529
https://orcid.org/0000-0002-2725-2529
https://orcid.org/0000-0002-2725-2529
mailto:ningzy@sustech.edu.cn
mailto:zhangfw@sustech.edu.cn
mailto:11612127@mail.sustech.edu.cn
mailto:11711715@mail.sustech.edu.cn
mailto:csjcao@comp.polyu.edu.hk

The right side of Fig. 1 presents the new debugging model
introduced since ARMv7. In this model, a memory-mapped
interface is used to map a group of debug registers into the
memory so that the on-chip processor can also access the
DAP. Consequently, an on-chip processor can act as a
debug host and debug another processor (the debug target)
on the same chip; we refer to this debugging model as the
inter-processor debugging model. Nevertheless, ARM does
not provide an upgrade on the privilege management mech-
anism for the new debugging model and still uses the leg-
acy debug authentication signals in the inter-processor
debugging model, which exacerbates our concern on the
security of the debugging features.

In this paper, we dig into the ARM debugging architec-
ture to acquire a comprehensive understanding of the
debugging features and summarize the security implica-
tions. We note that the debug authentication signals only
take the privilege mode of the debug target into account and
ignore the privilege mode of the debug host. It works well in
the traditional debugging model since the debug host is an
off-chip debugger in this model, and the privilege mode of
the debug host is not relevant to the debug target. However,
in the inter-processor debugging model, the debug host and
debug target locate at the same chip and share the same
resource (e.g., memory and registers), and reusing the same
debug authentication mechanism leads to a privilege escala-
tion via misusing the debugging features. With the help of
another processor, a low-privilege processor can obtain arbi-
trary access to high-privilege resources such as code, mem-
ory, and registers. Note that the low-privilege in this paper
mainly refers to the kernel-level privilege, while the high-
privilege refers to the hypervisor-level privilege and the
secure privilege levels provided by TrustZone [13].

This privilege escalation depends on the debug authenti-
cation signals. However, ARM does not provide a standard
mechanism to control these authentication signals, and the
management of these signals highly depends on the Sys-
tem-on-Chip (SoC) manufacturers. Thus, we further con-
duct an extensive survey on the debug authentication
signals in different ARM-A platforms. Specifically, we
investigate the default status and the management mecha-
nism of these signals on devices powered by various SoC
manufacturers, and the target devices cover four product
domains including development boards, Internet of Things
(IoT) devices, commercial cloud platforms, and mobile
devices.

Our investigation finds that the debug authentication sig-
nals are fully or partially enabled on the investigated plat-
forms. Moreover, the management mechanism of these
signals is either undocumented or not fully functional.
Based on this result, we craft a novel attack scenario, which
we call NAILGUN.1 NAILGUN works on a processor running in
a low-privilege mode and accesses the high-privilege con-
tent of a system without restriction via the aforementioned
new debugging model. Specifically, with NAILGUN, the low-
privilege processor can trace the high-privilege execution
and even execute arbitrary payload at a high-privilege
mode. To demonstrate our attack, we implement NAILGUN

on commercial devices with different SoCs and architec-
tures, and the experiment results show that NAILGUN is able
to break the privilege isolation enforced by the ARM archi-
tecture. Our experiment on Huawei Mate 7 also indicates
that NAILGUN can leak the fingerprint image stored in Trust-
Zone from commercial mobile phones. In addition, we pres-
ent potential countermeasures to our attack in different
perspectives of the ARM ecosystem. Note that the debug
authentication signals cannot be simply disabled to avoid the
attack, and we will discuss this in Section 6.

Our findings have been reported to the related hardware
manufacturers including IoT device vendors such as Rasp-
berry PI Foundation [14], commercial cloud providers such
as miniNode [15], Packet [16], Scaleway [17], and mobile
device vendors such as Motorola [18], Samsung [19], Hua-
wei [20], Xiaomi [21]. Meanwhile, SoC manufacturers are
notified by their customers (e.g., the mobile device vendors)
and work with us for a practical solution. We have also
informed ARM about the security implications.

Moreover, we design a practical defense of NAILGUN

based on ARM virtualization technology. Specifically, we
protect the debug registers with additional memory address
translation layer in a higher privilege level. To evaluate our
design, we implement a prototype of the defense mecha-
nism on the Raspberry PI 3 Model B+ board. The experi-
ments show that our defense can prevent NAILGUN with a
negligible performance penalty.

The hardware debugging features have been deployed to
the modern processors for years, and not enough attention
is paid to the security of these features since they require
physical access in most cases. However, it turns out to be
vulnerable in our analysis when the multiple-processor sys-
tems and inter-processor debugging model are involved.
We consider this as a typical example in which the deploy-
ment of new and advanced systems impacts the security of
a legacy mechanism. The intention of this paper is to rethink
the security design of the debugging features and motivate
the researchers/developers to draw more attention to the
“known-safe” or “assumed-safe” components in the exist-
ing systems. We consider the contributions of our work as
follows:

� We dig into the ARM debugging architecture in dif-
ferent ARM architectures including ARM-A, ARM-
R, and ARM-M to acquire a comprehensive under-
standing of the debugging features, and summarize

Fig. 1. Debug models in ARM architecture.

1. Nailgun is a tool that drives nails through the wall—breaking the
isolation.

NING ETAL.: REVISITING ARM DEBUGGING FEATURES: NAILGUN AND ITS DEFENSE 575

the vulnerability implications. To our best knowl-
edge, this is the first security study on the ARM
debugging architecture.

� We investigate a series of ARM-based platforms in
different product domains to examine their security
in regard to the debugging architecture. The result
shows that most of these platforms are vulnerable.

� We expose a potential attack surface that universally
exists in ARM-based devices. It is not related to the
software bugs but only relies on the ARM debugging
architecture.

� We implement NAILGUN attack and demonstrate the
feasibility of the attack on different ARM-A architec-
tures and platforms including 64-bit ARMv8-A Juno
Board, 32-bit ARMv8-A Raspberry PI 3 Model B+,
and ARMv7-A Huawei Mate 7. To extend the
breadth of the attack, we design different attacking
scenarios based on both non-invasive and invasive
debugging features. The experiments show that
NAILGUN can lead to arbitrary payload execution in a
high-privilege mode and leak sensitive information
from Trusted Execution Environments (TEEs) in
commercial mobile phones.

� We propose comprehensive countermeasures to our
attacks from different perspectives in the ARM eco-
system. Moreover, we design a practical defense
mechanism based on ARM virtualization technology
and implement a prototype of the defense on a Rasp-
berry PI 3 Model B+ board. The evaluation results
show that our defense can prevent NAILGUN with a
negligible performance penalty.

This paper is an extended version of our previous
work [22] published in IEEE Symposium on Security & Pri-
vacy 2019. Based on that work, we design and implement a
practical defense mechanism to prevent NAILGUN attack
with a negligible performance overhead. We also extend
previous attack scenarios to show NAILGUN can be used to
access privileged registers from a low-privilege mode. A
comprehensive analysis of related vulnerability on ARM-R
and ARM-M architectures is also presented. The main dif-
ferences between these two versions are listed below:

� Based onARMvirtualization technology, we design a
practical defense mechanism of NAILGUN by enabling
an additional memory translation layer to restrict the
access to debug registers. With this restriction, we
prevent NAILGUN by disabling the attacker’s ability of
forcing the processors to enter a high-privilege mode
in debug state.

� We implement a prototype of the proposed defense
on a 32-bit Raspberry PI 3 Model B+ board. The eval-
uation shows that the defense mechanism is capable
of preventing NAILGUN with less than 1.1% perfor-
mance overhead.

� We extend the attack scenario of NAILGUN and show
that NAILGUN can also be used to access privileged
registers from a low-privilege mode.

� We perform a comprehensive analysis of the vulner-
abilities exploited by NAILGUNon ARM-R and ARM-
M architectures. Our analysis shows that these archi-
tectures may also suffer from NAILGUN attack.

� Moreover, we will release the source code of the
designed defense mechanism and representative
attack scenarios with detailed instructions to repro-
duce the attack in [23].

2 BACKGROUND

2.1 ARM, SoC Manufacturer, and OEM

Fig. 2 shows the relationship among the roles in the ARM
ecosystem. ARM designs SoC infrastructures and processor
architectures as well as implementing processors like the
Cortex series. With the design and licenses from ARM, the
SoC manufacturers, such as Qualcomm, develop chips (e.g.,
Snapdragon series) that integrate ARM’s processor or some
self-designed processors following ARM’s architecture. The
OEMs (e.g., Samsung and Google) acquire these chips from
the SoC manufacturers, and produce devices such as PC
and smartphones for end users.

Note that the roles in the ecosystem may overlap. For
example, ARM develops its own SoC like the Juno boards,
and Samsung also plays the role of the SoC manufacturer
and develops the Exynos SoCs.

2.2 ARM Debugging Architecture

The ARM architecture defines both invasive and non-inva-
sive debugging features [5], [6]. The invasive debugging is
defined as a debug process where a processor can be con-
trolled and observed, whereas the non-invasive debugging
involves observation only without the control. The debug-
ging features such as breakpoint and software stepping
belong to the invasive debugging since they are used to halt
the processor and modify its state. In contrast, the debug-
ging features such as tracing (via the Embedded Trace Mac-
rocell) and monitoring (via the Performance Monitor Unit)
are non-invasive debugging.

2.3 ARM Security Extension

The ARM Security Extensions [13], known as TrustZone
technology, allows the processor to run in secure and non-
secure states. The memory is divided into secure and non-
secure regions so that the secure memory region is only
accessible to the processors running in the secure state.

In ARMv8-A architecture [6], the privilege of a processor
depends on its current Exception Level (EL). EL0 is nor-
mally used for user-level applications while EL1 is designed
for the kernel, and EL2 is reserved for the hypervisor. EL3
acts as a gatekeeper between the secure and non-secure
states, and owns the highest privilege in the system. The
switch between the secure and non-secure states occurs
only in EL3.

Fig. 2. Relationships in the ARM ecosystem.

576 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

2.4 ARM Debug Authentication Signals

ARMv7-A and ARMv8-A architectures define four signals
for external debug authentication, i.e., DBGEN, NIDEN, SPI-
DEN, and SPNIDEN. The DBGEN signal controls whether the
non-secure invasive debugging is allowed in the system.
While the signals DBGEN or NIDEN is high, the non-secure
non-invasive debugging is enabled. Similarly, the SPIDEN

and SPNIDEN signals control the secure invasive and non-
invasive debugging, respectively. Note that these signals
consider only the privilege mode of the debug target, and
the privilege mode of the debug host is left out.

Comparedwith ARM-A architectures, ARM-R and ARM-
M provide different signals for debug authentication. Since
ARMv7-R and ARMv7-M lack the support Security Exten-
sion, they only define the DBGEN and NIDEN signals to con-
trol the invasive and non-invasive debugging, respectively.
ARMv8-R supports Virtualization Extension and defines
two additional signals (i.e., HIDEN and HNIDEN) for EL2. The
HIDEN signal controls the invasive debugging, while the
HNIDEN controls the non-invasive debugging. Moreover,
since ARMv8-M supports Security Extension, the debug
authentication signals in ARMv8-R are identical to those in
ARM-A architecture.

In the ARM Ecosystem, ARM only designs these signals
but specifies no standard to control these signals. Typically,
the SoC manufacturers are responsible for designing a
mechanism to manage these signals, but this mechanism in
different SoCs may vary. The OEMs are in charge of
employing the management mechanisms to configure (i.e.,
disable/enable) the authentication signals in their produc-
tion devices.

2.5 ARM CoreSight Architecture

The ARM CoreSight architecture [24] provides solutions for
debugging and tracing of complex SoCs, and ARM designs a
series of hardware components under the CoreSight architec-
ture. In this paper, we mainly use the CoreSight Embedded
TraceMacrocell and the CoreSight EmbeddedCross Trigger.

The Embedded Trace Macrocell (ETM) [7] is a non-inva-
sive debugging component that enables the developer to
trace instruction and data by monitoring instruction and
data buses with a low-performance impact. To avoid the
heavy performance impact, the functionality of the ETM on
different ARM processors varies.

The Embedded Cross Trigger (ECT) [8] consists of Cross
Trigger Interface (CTI) and Cross Trigger Matrix (CTM). It
enables the CoreSight components to broadcast events
between each other. The CTI collects and maps the trigger
requests, and broadcasts them to other interfaces on the
ECT subsystem. The CTM connects to at least two CTIs and
other CTMs to distribute the trigger events among them.

2.6 ARMv8-A Memory Address Translation

For memory management, ARMv8-A architecture introduces
three types of address, including the virtual address (VA), the
intermediate physical address (IPA), and the physical address
(PA). This architecture also provides a procedure of mapping
one address type to another (i.e., the address translation). In a
typical process of address translation, the Memory Manage-
ment Unit (MMU) takes the input address of one type (e.g.,

the VA), performs the corresponding translation, then returns
an output address of another type (e.g., the IPA). If the MMU
fails to translate the input address, it generates anMMU fault
with a specific reason (e.g., the translation fault caused by an
invalid page in the translation table).

Fig. 3 shows three types of translation regimes defined by
ARMv8-A architecture. Each exception level has its own
Stage 1 translation, and an additional translation layer (i.e.,
Stage 2 translation) controlled by EL2 is introduced in
EL1&0. The additional translation is generally utilized for
hypervisors to manage guest memory, and it can also be
used for enhancing kernel security [25].

3 SECURITY IMPLICATIONS OF THE DEBUGGING

ARCHITECTURE

In this section, we carefully investigate the non-invasive and
invasive debugging mechanisms documented in the Tech-
nique Reference Manuals (TRM) [5], [6] of ARM-A architec-
tures, and reveal the vulnerability and security implications
indicated by the manual. The differences between ARM-A
architectures and other ARM architectures are presented in
Section 5.2.6. Note that we assume the required debug authenti-
cation signals are enabled in this section, and this assumption is
proved to be reasonable and practical in Section 4.

3.1 Non-Invasive Debugging

The non-invasive debugging does not allow halting a pro-
cessor and introspecting the state of the processor. Instead,
non-invasive features such as the Performance Monitor
Unit (PMU) and Embedded Trace Macrocell (ETM) are
used to count the processor events and trace the execution,
respectively.

In the ARMv8-A architecture, the PMU is controlled by a
group of registers accessible in non-secure EL1. However,
we find that ARM allows the PMU to monitor the events
fired in EL2 even when the NIDEN signal is disabled.2 Fur-
thermore, the PMU canmonitor the events fired in the secure
state including EL3 with the SPNIDEN signal enabled. In
other words, an application with non-secure EL1 privilege is
able to monitor the events fired in EL2 and the secure state
with the help of the debug authentication signals. The TPM

bit of the MDCR register is introduced in ARMv8-A to restrict
the access to the PMU registers in low ELs. However, this
restriction is only applied to the system register interface but
not thememory-mapped interface [6].

The ETM traces the instructions and data streams of a tar-
get processor with a group of configuration registers. Similar
to the PMU, the ETM is able to trace the execution of the non-
secure state (including EL2) and the secure state with the
NIDEN and SPNIDEN signals, respectively. However, it only

Fig. 3. ARMv8-A address translation.

2. In ARMv7-A, NIDEN is required to make PMUmonitor the events
in non-secure state.

NING ETAL.: REVISITING ARM DEBUGGING FEATURES: NAILGUN AND ITS DEFENSE 577

requires non-secure EL1 to access the configuration registers
of the ETM. Similar to the aforementioned restriction on the
access to the PMU registers, the hardware-based protection
enforced by the TTA bit of the CPTR register is also applied to
only the system register interface [6].

In conclusion, the non-invasive debugging feature allows
the application with a low privilege to learn information
about the high-privilege execution.

Implication 1: An application in the low-privilege mode is able
to learn information about the high-privilege execution via
PMU and ETM.

3.2 Invasive Debugging

The invasive debugging allows an external debugger to halt a
target processor and access the resources on the processor via
the debugging architecture. Fig. 4 shows a typical invasive
debugging model. In the scenario of invasive debugging, we
have an external debugger (HOST) and the debug target pro-
cessor (TARGET). To start the debugging, the HOST sends a
debug request to the TARGET via the ECT. Once the request is
handled, the communication between the HOST and TARGET

is achieved via the instruction transferring and data commu-
nication channel (detailed in Section 3.2.2) provided by the
debugging architecture. Finally, the restart request is used to
end the debugging session. In this model, since the HOST is
always considered as an external debugging device or a tool
connected via the JTAG port, we normally consider it
requires physical access to debug the TARGET. However,
ARM introduces an inter-processor debugging model that
allows an on-chip processor to debug another processor on
the same chip without any physical access or JTAG connec-
tion since ARMv7-A. Furthermore, the legacy debug authen-
tication signals, which only consider the privilege mode of
the TARGET but ignore the privilege mode of the HOST, are
used to conduct the privilege control in the inter-processor
debugging model. In this section, we discuss the security
implications of the inter-processor debugging under the leg-
acy debug authenticationmechanism.

3.2.1 Entering and Existing Debug State

To achieve the invasive debugging in the TARGET, one
should make the TARGET run in the debug state. There are
two typical approaches to make a processor enter the debug
state: executing an HLT instruction on the processor or send-
ing an external debug request via the ECT.

The HLT instruction is widely used as a software break-
point, and executing an HLT instruction causes the processor
to halt and enter the debug state directly. A more general
approach to enter the debug state is to send an external

debug request via the ECT. Each processor in a multi-proces-
sor system is embedded with a separated CTI (i.e., interface
to ECT), and the memory-mapped interface makes the CTI
on a processor available to other processors. Thus, the HOST
can leverage the CTI of the TARGET to send the external
debug request and make the TARGET enter the debug state.
Similarly, a restart request can be used to exit the debug state.

However, the external debug request does not take the
privilege of the HOST into consideration; this design allows
a low-privilege processor to make a high-privilege proces-
sor enter the debug state. For example, a HOST running in
the non-secure state can make a TARGET running in the
secure state enter the debug state with the SPIDEN enabled.

Implication 2: A low-privilege processor can make an arbitrary
processor (even a high-privilege processor) enter the debug
state via ECT.

3.2.2 Debug Instruction Transfer/Communication

Although the normal execution of a TARGET is suspended
after entering the debug state, the External Debug Instruction
Transfer Register (EDITR) enables the TARGET to execute
instructions in the debug state. Each processor owns a sepa-
rated EDITR register, and writing an instruction (except for
special instructions like branch instructions) to this register
when the processor is in the debug state makes the processor
execute it.

To enable data transferring between a HOST in the normal
state and a TARGET in the debug state, Debug Communica-
tion Channel (DCC) is introduced. In ARMv8-A architecture,
three registers exist in the DCC. A 32-bit DBGDTRTX register
is used to transfer data from the TARGET to the HOST, while a
32-bit DBGDTRRX register is used to receive data from the
HOST. Moreover, a 64-bit DBGDTR register is available to
transfer data in both directions with a single register.

We note that the execution of the instruction in the EDITR
register only depends on the privilege of the TARGET and
ignores the privilege of the HOST, which actually allows a
low-privilege processor to access the high-privilege resource
via the inter-processor debugging. Assume that the TARGET
is running in the secure state and the HOST is running in the
non-secure state; the HOST can ask the TARGET to read the
secure memory via the EDITR register and further acquire
the result via the DBGDTRTX register.

Implication 3: In the inter-processor debugging, the instruc-
tion execution and resource access in the TARGET does not
consider the privilege of the HOST .

3.2.3 Privilege Escalation

Implication 2 and Implication 3 indicate that a low-privilege
HOST can access the high-privilege resource via a high-priv-
ilege TARGET. However, if the TARGET remains in a low-
privilege mode, the access to the high-privilege resource is
still restricted. ARM offers an easy way to escalate privilege
in the debug state. The dcps1, dcps2, and dcps3 instruc-
tions, which are only available in debug state, can directly
promote the exception level of a processor to EL1, EL2, and
EL3, respectively.

Fig. 4. Invasive debugging model.

578 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

The execution of the dcps instructions has no privilege
restriction, i.e., they can be executed at any exception level
regardless of the secure or non-secure state. This design
enables a processor running in the debug state to achieve an
arbitrary privilege without any restriction.

Implication 4: The privilege escalation instructions enable a
processor running in the debug state to gain a high privilege
without any restriction.

3.3 Summary

Both the non-invasive and invasive debugging involve the
design that allows an external debugger to access the high-
privilege resource while certain debug authentication sig-
nals are enabled, and the privilege mode of the debugger is
ignored. In the traditional debugging model that the HOST

is off-chip, this is reasonable since the privilege mode of the
off-chip platform is not relevant to the on-chip platform
where the TARGET locates. However, since ARM allows an
on-chip processor to act as an external debugger, simply
reusing the rules of the debug authentication signals in the
traditional debugging model makes the on-chip platform
vulnerable.

Moreover, the discussed implications are difficult to be
identified by automatic analysis or test since they require a
comprehensive understanding of the debugging architec-
ture. However, once they are discovered, we can leverage
automatic analysis to verify whether a specific device is vul-
nerable or not. For example, the value of Debug Authentica-
tion Status Register (DBGAUTHSTATUS) indicates the status
of debug authentication signals in a device, and analyzers
can use this status to evaluate whether the device is vulnera-
ble to NAILGUN attach in large-scale automatic analysis.

4 DEBUG AUTHENTICATION SIGNALS IN

REAL-WORLD DEVICES

The aforementioned isolation violation and privilege escala-
tion occur only when certain debug authentication signals

are enabled. Thus, the status of these signals is critical to the
security of the real-world devices, which leads us to investi-
gate the default status of the debug authentication signals in
real-world devices. Moreover, we are also interested in the
management mechanism of the debug authentication sig-
nals deployed on real-world devices since the mechanism
may be used to change the status of the signals at runtime.
Furthermore, as this status and management mechanism
depend on the SoC manufacturers and the OEMs, we select
various devices powered by different SoCs and OEMs as
the investigation target.

To understand the status of debug authentication signals,
we survey the devices applied in different product domains
including development boards (e.g., the official Juno
Board [26] released by ARM), Internet of Things (IoT) devi-
ces (e.g., the Raspberry PI 3 [14]), commercial cloud plat-
forms (e.g., miniNodes [15], Packet [16], and Scaleway [17]),
and mobile devices (e.g., Google Nexus 6, Samsung Galaxy
Note 2, Huawei Mate 7, Motorola E4 Plus, and Xiaomi
Redmi 6). For these devices, we read the status of debug
authentication signals via the Debug Authentication Status
Register (DBGAUTHSTATUS), and the result is shown in
Table 1. According to our investigation, these signals are
fully or partially enabled on all the tested devices by
default, making them vulnerable to the aforementioned iso-
lation violation and privilege escalation. The detailed result
of the survey can be found in [22].

Furthermore, to learn the deployed signal management
mechanism, we collect information from the publicly avail-
able manuals and the source code released by the hardware
vendors. Based on our survey, there is no publicly available
management mechanism for these signals on all tested devi-
ces except for development boards. The documented man-
agement mechanism of development boards is either
incomplete or not fully functional. On the one hand, the
unavailable management mechanism may help to prevent
malicious access to the debug authentication signals. On the
other hand, it stops the user from disabling the debug
authentication signals for defense purposes. The detailed
analysis result can be found in [22].

TABLE 1
Debug Authentication Signals on Real Devices

NING ETAL.: REVISITING ARM DEBUGGING FEATURES: NAILGUN AND ITS DEFENSE 579

5 NAILGUN ATTACK

To verify the security implications concluded in Section 3
and the findings of the debug authentication signals
described in Section 4, we craft an attack named NAILGUN

and implement it in several different ARM-A platforms.
NAILGUN misuses the non-invasive and invasive debugging
features in the ARM architecture and gains the access to the
high-privilege resource from a low-privilege mode. To fur-
ther understand the attack, we design one attacking scenar-
ios for non-invasive debugging and three attacking scenarios
for invasive debugging, respectively. With the non-invasive
debugging feature, NAILGUN is able to infer AES encryption
keys, which are isolated in EL3, via executing an application
in non-secure EL1. Moreover, we craft a prototype of NAIL-

GUN attack to read the privileged resource via invasive
debugging attack in Raspberry PI 3 Model B+. To further
leverage the invasive debugging mechanism, we demon-
strate that an application running in non-secure EL1 can exe-
cute arbitrary payloads in EL3 with NAILGUN. To learn the
impact of NAILGUN on real-world devices, we show that NAIL-

GUN can be used to extract the fingerprint image protected by
TEE in Huawei Mate 7. We also offer the difference of NAIL-

GUN attack between 64-bit ARMv8-A and other ARM-A
architectures. Furthermore, the analysis on ARM-R and
ARM-M debugging architectures is presented to explore
NAILGUN attack on these architectures.

5.1 Threat Model and Assumptions

In our attack, we make no assumption about the version or
type of the operating system and do not rely on software
vulnerabilities. In regard to the hardware, NAILGUN is not
restricted to any particular processor or SoC and is able to
work on various ARM-based platforms. Moreover, physical
access to the platform is not required.

In the non-invasive debugging attack, we assume the
SPNIDEN or NIDEN signal is enabled to attack the secure
state or the non-secure state, respectively. We also make sim-
ilar assumptions to the SPIDEN and DBGEN signals in the
invasive debugging attack. We further assume the target
platform is amulti-processor platform in the invasive debug-
ging attack. Moreover, our attack requires the access to the
CoreSight components and debug registers, which are typi-
cally mapped to some physical memory regions in the sys-
tem. Note that it normally requires non-secure EL1 privilege
to map the CoreSight components and debug registers to the
virtual memory address space.

5.2 Attack Scenarios

5.2.1 Inferring Encryption Keys via Non-Invasive

Debugging

AES algorithm has been proved to be vulnerable to side-
channel attacks [27], [28], [29], [30], [31], [32] since the table-
lookup based implementation leaks the information about
the encryption key. With the addresses of the accessed table
entries, an attacker can efficiently rebuild the encryption
key. In this attack, we assume a secure application running
in TrustZone provides AES encryption service with a prede-
fined encryption key. The secure application also exposes an
interface to the non-secure OS for encrypting a given

plaintext. The non-secure OS cannot directly read the
encryption key since TrustZone enforces the isolation
between the secure and non-secure states. Our goal is to
reveal the encryption key stored in the secure memory by
invoking the encryption interface from the non-secure OS.

The violation of privilege isolation described in Sec-
tion 3.1 enables a non-secure application to learn the infor-
mation about the secure execution. Specifically, we leverage
the ETM instruction trace to rebuild the addresses of exe-
cuted instructions and data-address trace to record the data
involved in data processing instructions (e.g., ldr, str,
mov, and etc.). With this information, it is trivial to learn the
addresses of the instructions performing AES table lookup
and the memory addresses of the accessed table entries.
Finally, we infer the AES encryption key with the recorded
addresses.

To demonstrate the attack, we initially build a bare-metal
environment on an NXP i.MX53 Quick Start Board [33]. The
board is integrated with a single Cortex-A8 processor
enabling the data-address trace, and we build our environ-
ment based on an open-source project [34] that enables the
switching and communication between the secure and non-
secure states. Next, we transplant the AES encryption algo-
rithm of the OpenSSL 1.0.2n [35] to the environment and
run it in the secure state with a predefined 128-bit key
stored in the secure memory. A non-secure application can
provide a plaintext and send an encryption request via the
interface exposed by the secure state.

Fig. 5 demonstrates our attack process. We use a random
128-bit input as the plaintext of the encryption in ➀, and the
corresponding ciphertext is recorded in ➁. From the ETM
trace stream, we decode the addresses of accessed table
entries in each encryption round and convert them into
entry indices by base addresses of the tables, as shown in ➂.
With the indices and the ciphertext, we reverse the encryp-
tion algorithm and calculate the round keys in ➃. Finally,
NAILGUN decodes the original encryption key in ➄ via the
round key and accessed table entries in round 1.

Note that previous side-channel attacks to the AES algo-
rithm require hundreds or even thousands of runs with dif-
ferent plaintexts to exhaust the possibilities. NAILGUN is able
to reveal the AES encryption key with a single run of an arbi-
trary plaintext.

Fig. 5. Retrieving the AES encryption key.

580 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

5.2.2 Privileged Resource Access via Invasive

Debugging

The invasive debugging is more powerful than non-inva-
sive debugging since we can halt the target processor and
access the restricted resources via the debugging architec-
ture. In this section, we design and implement an attack sce-
nario to show that NAILGUN can be used to access privileged
resources via privilege escalation on Raspberry PI 3 Model
B+ board. The board contains a quad-core Cortex-A53 clus-
ter, and the official firmware makes the Cortex-A53 on
Raspberry PI run in the 32-bit ARMv8 mode.

In this attack scenario, we craft the NAILGUN attack to read
the Secure Configuration Register (SCR) from non-secure
EL1, which violates the access restriction that this register is
supposed to be accessed only in EL3. Specifically, we lever-
age one of the Cortex-A53 processors (HOST) in the cluster
to debug and control another Cortex-A53 processor (TAR-
GET) in the same cluster via a Loadable Kernel Module
(LKM) running within the Linux kernel. With the debug-
ging architecture, we first halt the TARGET from the HOST

and promote the privilege of the HOST to EL3. Next, the
TARGET is instructed to access the SCR and return the result
to the HOST. Finally, we resume the TARGET to normal exe-
cution. Fig. 6 indicates the attack process, and the right-bot-
tom rectangle shows the value we read from SCR.

5.2.3 Arbitrary Payload Execution via Invasive

Debugging

In this section, we further extend the aforementioned attack
and leverage the invasive debugging to achieve arbitrary
payload execution.

The EDITR register enables an attacker to execute
instructions on the TARGET from the HOST. However, not
all instructions can be executed via the EDITR register. For
example, executing branch instructions (e.g., b, bl, and blr

instructions) in EDITR leads to an unpredictable result.
However, a malicious payload in real-world normally con-
tains branch instructions. To bypass this restriction, NAIL-

GUN crafts a robust solution to execute an arbitrary payload
in the high-privilege modes.

In general, we consider the execution of the malicious
payload should satisfy three basic requirements: 1) Com-
pleteness. The payload should be executed in the non-
debug state to overcome the instruction restriction of the
EDITR register. 2) High Privilege. The payload should be
executed with a privilege higher than the attacker owns. 3)
Robust. The execution of the payload should not affect the
execution of other programs.

To satisfy the first requirement, NAILGUN has to manipu-
late the control flows of the non-debug state in the TARGET.

For a processor in the debug state, the DLR_EL0 register
holds the address of the first instruction to execute after
exiting the debug state. Thus, we overwrite the instruction
pointed by this register to redirect the control flow of the
non-debug state to our payload.

The second requirement cannot be satisfied by simply
executing dcps instructions since the dcps instructions
only changes the exception level of a processor in the debug
state. The exception level of the processor is reverted while
exiting the debug state. We note that the smc instruction in
the non-debug state asserts a Secure Monitor Call (SMC)
exception, which takes the processor to the corresponding
exception handler in EL3. Thus, we manipulate the excep-
tion vector stored in the VBAR_EL3 register and leverage
this instruction to enter the malicious payload in EL3.

The third requirement is also critical since NAILGUN modi-
fies the memory pointed by the DLR_EL0 and VBAR_EL3

registers to meet the previous requirements. To avoid the
side-effect introduced by the manipulation, NAILGUN needs
to rollback these changes in the TARGET after executing the
payload. Moreover, NAILGUN needs to store the context at
the very beginning of the payload and revert it at the end of
the payload.

We implement NAILGUN on a 64-bit ARMv8-A Juno r1
board [26] to show that the Implications 2-4 lead to arbitrary
payload execution in EL3. The board contains two Cortex-
A57 processors and four Cortex-A53 processors, and we use
ARM Trusted Firmware (ATF) [36] and Linaro’s deliver-
ables on OpenEmbedded Linux for Juno [37] to build the
software environment that enables both the secure and non-
secure OSes. In the ATF implementation, the memory range
0xFF000000-0xFFDFFFFF is configured as the secure
memory, and we demonstrate that we can copy arbitrary
payload to the secure memory and execute it via an LKM in
non-secure EL1.

Fig. 7 describes the status and memory changes of the
TARGET during the entire attack. The highlighted red in the
figure implies the changed status and memory. In Fig. 7a,
the TARGET is halted by the HOST before the execution of
the mov instruction, and VBAR_EL3 points to the EL3 excep-
tion vector. Since the SMC exception belongs to the synchro-
nous exception and Juno board implements EL3 using 64-bit
architecture, the handler for SMC exception locates at offset
0x400 of the exception vector [6]. Fig. 7b shows the mem-
ory of the TARGET before exiting the debug state. In the
debug state, NAILGUN copies the payload to the secure mem-
ory and changes the instruction pointed by the DLR_EL0 to
an smc instruction. Moreover, the corresponding exception
handler (pointed by VBAR_EL3 + 0x400) is changed to a
branch instruction (the b instruction) targeting the copied
payload. Then, the HOST resumes the TARGET with the pc

register pointing to the malicious smc instruction, as shown
in Fig. 7c. The execution of the smc instruction takes the
TARGET to the status shown in Fig. 7d. The TARGET is han-
dling the SMC exception; the corresponding exception
return address (pointed by the ELR_EL3 register) is the
address of the instruction next to the executed smc instruc-
tion. Our manipulation of the exception handler leads to the
execution of the payload, which performs malicious activi-
ties and restores the changed memory. At the end of the
payload, an eret instruction is leveraged to switch back to

Fig. 6. Reading the secure configuration register.

NING ETAL.: REVISITING ARM DEBUGGING FEATURES: NAILGUN AND ITS DEFENSE 581

the non-secure state. Fig. 7e indicates the memory and sta-
tus before the switch; the changes to the non-secure memory
and the EL3 exception vector is reverted. Moreover, the
ELR_EL3 register is also manipulated to ensure the execu-
tion of the mov instruction. Finally, in Fig. 7f, the TARGET

enters the non-secure state again, and the memory and sta-
tus look the same as that in Fig. 7a.

Fig. 8 shows an example of executing payload in Trust-
Zone via an LKM. Our payload contains a minimized serial
port driver so that NAILGUN can send outputs to the serial
port. To certify that the attack has succeeded, we also extract
the current exception level from the CurrentEL register.
The last line of the outputs in Fig. 8 indicates that NAILGUN

is able to execute arbitrary code in EL3, which owns the
highest privilege over the whole system.

5.2.4 Fingerprint Extraction in a Real-World Mobile

Phone

To learn the impact of NAILGUN on real-world devices, we also
show that NAILGUN is able to leak sensitive information stored
in securememory. Currently, one of the frequently used secu-
rity features in mobile phones is fingerprint authentica-
tion [21], [38], [39], and the OEMs store the fingerprint image
in TrustZone to enhance the security of the device [40], [41],
[42]. In this experiment,we useHuaweiMate 7 [38] to demon-
strate that the fingerprint image can be extracted by an LKM
running in the non-secure EL1 with the help of NAILGUN. The
Huawei Mate 7 is powered by HiSilicon Kirin 925 SoC, which

integrates a quad-core Cortex-A15 cluster and a quad-core
Cortex-A7 cluster. The FPC1020 [43] fingerprint sensor is
used inMate 7 to capture the fingerprint image. This phone is
selected since the product specification [44] and driver source
code [45] of FPC1020 are publicly available, which reduces
the engineering effort of implementing the attack.

As shown in the previous experiment, NAILGUN offers a
non-secure EL1 LKM the ability to read/write arbitrary
secure/non-secure memory. To extract the fingerprint
image, we need to know 1) where the image is stored and 2)
the format of the image data.

To learn the location of the image, we decompile the TEE
OS binary image, which is mapped to /dev/block/

mmcblk0p10, and identify that a function named
fpc1020_fetch_image is used to read the image from
the fingerprint sensor. This function takes a pointer to an
image buffer, an offset to the buffer, and the size of the image
as parameters, and copies the fingerprint image fetched from
the sensor to the image buffer. With further introspection,
we find that Huawei uses a pre-allocated large buffer to store
this image, and a pointer to the head of the buffer is stored in
a fixed memory address 0x2efad510. Similarly, the size of
the image is stored at a fixedmemory address 0x2ef7f414.
With the address and size, we extract the image data with
NAILGUN.

The format of the image data is well-documented in the
FPC1020 product specification [44]. According to the specifi-
cation, each byte of the data indicates the grayscale level of a
single pixel. Thus, with the extracted image data, it is trivial
to craft a grayscale fingerprint image. Fig. 9 shows the fin-
gerprint image extracted from Huawei Mate 7 via NAILGUN.
It demonstrates that NAILGUN is able to leak sensitive data
from the TEE in commercial mobile phones with some engi-
neering efforts. Note that the implementation of NAILGUN in
Huawei Mate 7 is different from that in ARM Juno board
due to architecture differences (see Section 5.2.5).

5.2.5 NAILGUN in Other ARM-A Architectures

Section 3 discusses the security implications of 64-bit
ARMv8-A debugging architecture, and similar implications

Fig. 7. Executing arbitrary payload in the secure state.

Fig. 8. Executing payload in TrustZone via an LKM.

582 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

exist in 32-bit ARMv8-A and ARMv7-A architecture. How-
ever, there are also some major differences in implementing
NAILGUN in these architectures, and we discuss them in
this section. Moreover, a preliminary study of NAILGUN on
ARMv9-A architecture is presented.

32-bit ARMv8-A Architecture. We implement prototypes of
NAILGUN with 32-bit ARMv8-A on Raspberry PI 3 Model B+
andMotorola E4 Plus. In this architecture, the steps of halting
processor are similar to the aforementioned steps in 64-bit
ARMv8-A architecture, and the major difference is the usage
of the EDITR. In the 64-bit ARMv8-A, we directly write the
binary representation of the instruction into the EDITR. How-
ever, the first half and last half of the instruction need to be
reversed in the 32-bitmode. For example, the binary represen-
tation of the dcps3 instruction is 0xD4A00003 and
0xF78F8003 in 32-bit and 64-bit ARMv8-A, respectively. In
the 64-bit ARMv8-A architecture, a processor in the debug
state executes this instruction via writing 0xD4A00003 to the
EDITR. However, the instructionwritten to the EDITR should
be 0x8003F78F instead of 0xF78F8003 in the 32-bit
ARMv8-A architecture.

ARMv7-A Architecture. In regard to Armv7-A, we imple-
ment NAILGUN on Huawei Mate 7 as discussed in Sec-
tion 5.2.4, and there are three major differences between
NAILGUN on ARMv7-A and ARMv8-A architectures. First,
the ECT is not required to halt and restart a processor in
ARMv7-A. Writing 1 to the bit[0] and bit[1] of the Debug
Run Control Register (DBGDRCR) can directly halt and
restart a processor, respectively. Second, the ITRen bit of
the EDSCR controls whether the EDITR is enabled in
ARMv7-A architecture. We need to enable the ITRen bit
after entering the debug state and disable it again before
exiting the debug state. Lastly, the dcps instructions are
undefined in the ARMv7-A architecture, and we need to
change the M bits of the Current Program Status Register
(CPSR) to promote the processor to the monitor mode to
access the secure resource.

ARMv9-A Architecture. Since the commercial ARMv9-A
device is not available yet, we implement a prototype of
NAILGUN on Fixed Virtual Platforms (FVP) [46] with ARMv9-
A Realm Management Extension [47]. The ARMv9-A archi-
tecture splits the execution environment into four states, i.e.,
non-secure state (non-secure EL0-EL2 in ARMv8-A), secure
state (secure EL0-EL2 in ARMv8-A), root state (EL3 in
ARMv8-A), and realm state (newly introduced in ARMv9-
A). Two additional debug authentication signals RLPIDEN

and RTPIDENare introduced to manage the debugging in
the realm and root state, respectively. Since the debugging in
the root state and realm state is disabled by default on the
FVP, we are not able to evaluate NAILGUN’s ability to attack

the corresponding state. Moreover, without entering root
state in debug state, the ability of NAILGUN to attack secure
state is also restricted. However, we succeed in accessing
non-secure EL2 resources from non-secure EL1 with NAIL-

GUN, which illustrates that the implications concluded in Sec-
tion 3may still exist in ARMv9-A architecture.

5.2.6 NAILGUN in ARM-R and ARM-M Architectures

To learn the impact of NAILGUN in ARM-R and ARM-M
architecture, we perform an extensive analysis to their
debugging architectures on the vulnerabilities exploited by
NAILGUN. However, due to the availability of devices meet-
ing the requirements of NAILGUN, we focus on the analysis
of architecture reference manuals, and the implementation
of NAILGUN on real-world devices is considered as our fur-
ther work.

ARMv7-R Architecture. The privilege modes and debug-
ging architecture in ARMv7-R [5] architecture are similar to
those in ARMv7-A architecture. Nevertheless, since the Vir-
tualization Extension and Security Extension are not sup-
ported in ARMv7-R architecture, the Hyp mode (EL2 in
ARMv8-A) and Monitormode (EL3 in ARMv8-A) are not
present. Thus, the PL1 (EL1 in ARMv8-A) owns the highest
privilege in the architecture.

Non-invasive and invasive debugging attack in NAILGUN

requires the access to ETM registers and debug registers,
respectively. In platforms with ARM-A architecture, it nor-
mally requires EL1 privilege tomap the physical addresses of
these registers to virtual addresses before accessing them.
However, the mapping is not required in ARMv7-R architec-
ture. Instead, Memory Protection Unit (MPU) is proposed,
and the memory access is restricted by protection regions.
Therefore, if an MPU configuration allows PL0 (EL0 in
ARMv8-A) to access these registers, NAILGUN may be lever-
aged to achieve the privilege escalation from PL0 to PL1. Oth-
erwise, it requires the highest privilege (PL1) in the system to
access these registers, and no privilege escalation is expected.

ARMv8-R Architecture. The ARMv8-R architecture [48],
[49] follows the design of ARMv8-A architecture, but the
Security Extension is still absent. To support Virtualization
Extension, an additional MPU is introduced in EL2 to
achieve the hypervisor-level memory access control. In
regard to the debug authentication signals, two additional
signals HIDEN and HNIDEN are introduced to control the
invasive debugging and non-invasive debugging in EL2,
respectively. To the best of our knowledge, the debug
authentication mechanism in ARMv8-R architecture still
lacks the consideration of the privilege in the HOST. Thus, we
consider it may suffer from NAILGUN if the configuration of
MPU allows the access to the ETM or debug registers from
EL0 or EL1.

ARMv7-M Architecture. Unlike the ARMv7-A and
ARMv7-R architecture, the ARMv7-M architecture only
defines two processor modes: Thread Mode and Handler
Mode. ThreadMode is designed for applications, while Han-
dler Mode is used for handling exceptions. The execution in
HandlerMode is always considered as privileged. However,
execution in ThreadMode can be either privileged or unpriv-
ileged, and the nPRIV bit of CONTROL register indicates the
current privilege status of Thread Mode. The system mem-
ory model in ARMv7-M also allows the MPU to manage

Fig. 9. Fingerprint Image Leaked by NAILGUN from Huawei Mate 7. The
right half of the image is blurred for privacy concerns.

NING ETAL.: REVISITING ARM DEBUGGING FEATURES: NAILGUN AND ITS DEFENSE 583

access permissions to various memory regions under differ-
ent processormodes.

According to the reference manual [50], the debug regis-
ters in ARMv7-M architecture are located at a fixed memory
address ranging from 0xE000EDF0 to 0xE000EEFF. How-
ever, how the address conflict is solved in a multiprocessor
system is not clarified in the manual. Moreover, the corre-
sponding debugging architecture does not involve the
instruction transfer channels, and HOST is not able to make
TARGET execute instructions in debug state. Thus, we con-
sider the invasive debugging attack would not work in
ARMv7-M architecture.

The non-invasive debugging attack in NAILGUN is based
on non-invasive tracing hardware ETM. However, ETM is
not a mandatory component for ARMv7-M devices due to
the special deployment scenarios. Moreover, the access to
the ETM registers relies on the configuration of MPU in a
device with ETM support. Thus, the non-invasive debug-
ging attack in ARMv7-M architecture requires a platform
with ETM support and an MPU configuration that allows
unprivileged access to ETM registers.

ARMv8-M Architecture. Based on ARMv7-M architecture,
ARMv8-M architecture [51] adds support to the Security
Extension. Similar to the Security Extension in ARM-A archi-
tecture, the memory space and processor state are divided
into secure and non-secure ones. The transition from the
non-secure state to the secure state is achieved by Secure
Gateway (SG) instruction, while the interstating branch
instructions (BXNS and BLXNS) targeting a non-secure mem-
ory address bring the processor back to the non-secure state.
Moreover, the debug authentication signal could be over-
written by software running in The secure state via the
DebugAuthentication Control Register (DAUTHCTRL).

The invasive debugging attack in NAILGUN requires a
HOST processor and a TARGET processor in the same SoC.
However, most available ARMv8-M devices contain a single
Cortex-M processor [52], [53], [54], [55], [56], [57]. Although
some devices [58], [59] claim there are two Cortex-M pro-
cessors in the SoC, one of them is acting as a coprocessor.
Thus, we consider launching an invasive debugging attack
on ARMv8-M devices would be challenging due to the lack
of multi-processor support.

Similar to ARMv7-M architecture, ETM is an optional
component for ARMv8-M devices, and the access to ETM
registers is restricted by MPU. Therefore, the non-invasive
debugging attack in ARMv8-M devices would be possible if
the MPU is configured inappropriately.

Nevertheless, since ARMv8-M architecture allows the
software to overwrite the debug authentication signals, the
SoC manufacturers and OEMs can tackle the attack with
software patches.

6 COUNTERMEASURE

In this section, we focus on the countermeasures in ARM-A
architecture as devices with ARM-A architecture are the
main victims of NAILGUN attack.

6.1 Disabling the Signals?

Since the feasibility of NAILGUN attack depends on enabled
debug authentication signals, an intuitive defense is to

disable these signals. However, based on the ARM-A Archi-
tecture Reference Manual [5], [6], the analysis in Section 4,
and the responses from the hardware vendors, we consider
these signals cannot be simply disabled due to the following
challenges:

Challenge 1: Existing tools rely on debug authentication sig-
nals. The invasive and non-invasive debugging features are
heavily used to build analysis systems [60], [61], [62], [63],
[64], [65], [66], [67], [68], [69]. Disabling the debug authenti-
cation signals would directly make these systems fully or
partially malfunction. In the ARMv7-A architecture [5], the
situation is even worse since the functionality of the widely
used Performance Monitor Unit (PMU) [68], [70], [71], [72],
[73], [74], [75] also relies on the authentication signals. Since
most of the aforementioned analysis systems attempt to per-
form malware detection/analysis, the risk of information
leakage or privilege escalation by misusing the debugging
features is dramatically increased (i.e., the debugging archi-
tecture is a double-edged sword in this case).

Challenge 2: The management mechanisms of the debug
authentication signals are not publicly available. According to
Section 4, the management mechanism of the debug authen-
tication signals is unavailable to the public in most tested
platforms. In our investigation, many SoC manufacturers
keep the TRMs of the SoC confidential; and the publicly
available TRMs of some other SoCs do not provide a com-
plete management mechanism of these signals or confuse
them with the JTAG debugging. The unavailable manage-
ment mechanism makes it difficult to disable these signals
by users. For example, developers use devices like Rasp-
berry PI to build their own low-cost IoT solutions, and the
default enabled authentication signals put their devices into
the risk of being remotely attacked via NAILGUN. However,
they cannot disable these authentication signals due to the
lack of available management mechanisms even they have
noticed the risk.

Challenge 3: The one-time programmable feature prevents con-
figuring the debug authentication signals. We also note that
many of the tested platforms use the fuse to manage the
authentication signals. On the one hand, the one-time pro-
grammable feature of the fuse prevents themalicious override
to the debug authentication signals. However, on the other
hand, users cannot disable these signals to avoid NAILGUN

attack due to the same one-time programmable feature on
existing devices. Moreover, the fuse itself is proved to be vul-
nerable to hardware fault attacks by previous research [76].

Challenge 4: Hardware vendors have concerns about the cost
and maintenance. The debug authentication signals are based
on the hardware but not the software. Thus, without addi-
tional hardware support, the signals cannot be simply dis-
abled by changing software configurations. According to
the response from hardware vendors, deploying additional
restrictions to the debug authentication signals increases the
cost for the product lines. Even if the vendors deploy such
restrictions (e.g., disabling the debug authentication signals)
on future devices, it still introduces a considerable cost for
the callback and maintenance process of current devices.

6.2 Comprehensive Countermeasure

We consider NAILGUN attack is caused by two reasons: 1) the
debug authentication signals defined by ARM does not fully

584 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

consider the scenario of inter-processor debugging, which
leads to the security implications described in Section 3; 2)
the configuration of debug authentication signals and the
management mechanism make NAILGUN attack feasible on
real-world devices. Thus, the countermeasures discussed in
this section mainly focus on the design, configuration, and
management of the debug authentication signals. In gen-
eral, we suggest a comprehensive defense across different
roles in the ARM ecosystem. As a supplement, we also pro-
vide a practical defense against NAILGUN attack, which
restricts the access to the debug registers.

6.2.1 Defense From ARM

Implementing additional restrictions in the inter-processor debug-
ging model. The key issue that drives the existence of NAILGUN

attack is that the design of the debugmechanism and authen-
tication signals does not fully consider the scenario of the
newly involved inter-processor debugging model. Thus,
redesigning them and making them consider the differences
between the traditional debugging mode and the inter-pro-
cessor debugging model would keep the security implica-
tions away completely. Specifically, we suggest the TARGET

checks the type of the HOSTprecisely. If the HOST is off-chip
(the traditional debugging model), the existing design is
good to work since the execution platforms of the TARGET

and the HOST are separated (their privileges are not relevant).
In regard to the on-chip HOST (the inter-processor debugging
model), a more strict restriction is required. For example, in
the invasive debugging, the TARGET should check the privi-
lege of the HOST and respond to the debug request only if the
HOST owns a higher or the same privilege as the TARGET.
Similarly, the request of executing dcps instructions should
also take the privilege of the HOST into consideration. The
HOST should never be able to issue a dcpsinstruction that
escalates the TARGET to an exception level higher than the
current HOST’s exception level. For usability concerns, the
high-privilege debugger can provide interfaces with addi-
tional authentication mechanisms to help a low-privilege
debugger to debug a high-privilege processor.

Refining the granularity of the debug authentication signals.
Other than distinguishing the on-chip and off-chip HOST, we
also suggest that the granularity of the authentication signals
should be improved. The DBGEN and NIDEN signals are
designed to control the debugging functionality of the whole
non-secure state, which offers a chance for the kernel-level
(EL1) applications to exploit the hypervisor-level (EL2) exe-
cution. Thus, we suggest a subdivision to these signals.

6.2.2 Defense From SoC Manufacturers

Defining a proper restriction to the signal management procedure.
Restricting the management of these signals would be a rea-
sonable defense from the perspective of the SoC manufac-
turers. Precisely, the privilege required to access the
management unit of a debug authentication signal should
follow the functionality of the signal to avoid the malicious
override. For example, the management unit of the SPNI-

DEN and SPIDEN signals should be restricted to secure
access only. The restriction methods of current SoC designs
are either too strict or too loose. On the ARM Juno SoC [26],
all the debug authentication signals can only be managed in

the secure state. Thus, if these signals are disabled, the non-
secure kernel can never use the debugging features to
debug the non-secure processor, even the kernel already
owns a high privilege in the non-secure state. We consider
this restriction method too strict since it somehow restricts
the legitimate usage of the debugging features. It could be
improved by allowing the highest privilege level in the non-
secure state (non-secure EL2) to manage the signals related
to the non-secure debugging. The design of the i.MX53
SoC [77], as opposed to ARM Juno SoC, shows a loose
restriction. The debug authentication signals are designed
to restrict the usage of the external debugger; however, the
i.MX53 SoC allows an external debugger to enable the
authentication signals without constraints. We consider this
restriction method too loose since it introduces a potential
attack surface to these signals. It could be improved by
adopting additional security mechanisms before allowing
the external debugger to change the authentication signals.

Applying access control to the debug registers. NAILGUN

attack relies on the access to the debug registers, which is
typically achieved by memory-mapped interfaces. Intui-
tively, restrictions on accessing these registers would help
to enhance the security of the platform. During the responsi-
ble disclosure to MediaTek, we learn that they have the
hardware-based technology for the TrustZone boundary
division, and they are planning to use it to restrict the access
to the debug registers to mitigate the reported attack. The
ARMv8.4-A architecture also introduces an extension to
restrict the non-secure access to debugging registers. How-
ever, simply using the secure/non-secure state to apply the
access control would still lead to privilege escalation in a
single state. For example, our study on ARMv9 FVP in Sec-
tion 5.2.5 shows that it is possible to access non-secure EL2
resources from non-secure EL1 with NAILGUN.

6.2.3 Defense From OEMs and Cloud Providers

Keeping a balance between security and usability. With the sig-
nal management mechanism released by the SoC manufac-
turers, we suggest that OEMs and cloud providers disable
all the debug authentication signals by default. This default
configuration helps to protect the secure content from the
non-secure state and avoids the privilege escalation among
the non-secure exception levels. Meantime, they should
allow the application with a corresponding privilege to
enable these signals for legitimate debugging or mainte-
nance purpose, and the usage of the signals should strictly
follow the management mechanism designed by the SoC
manufacturers. With this design, the legitimate usage of the
debugging features from privileged applications is allowed,
while the misuse from unprivileged applications is for-
bidden. Similarly, applying this restriction to the access of
CoreSight components and debug registers can also form an
effective defense since the debugging features are exploited
via the CoreSight components and the debug registers.

Disabling the LKM in the Linux-based OSes. In most plat-
forms, the debug registers work as an I/O device, and the
attacker needs to manually map the physical address of the
debug registers to virtual memory address space, which
requires kernel privilege, to gain the access to these regis-
ters. In the Linux kernel, the common approach to execute

NING ETAL.: REVISITING ARM DEBUGGING FEATURES: NAILGUN AND ITS DEFENSE 585

code with kernel privilege is to load an LKM. The LKMs in
the traditional PC environment normally provide additional
drivers or services. However, in the scenario of mobile devi-
ces and IoT devices, where the LKMs are not highly needed,
we may disable the loading of the LKMs to prevent the arbi-
trary code execution in the stock kernel (many android
devices have adopted this strategy). In this case, the attacker
would not be able to map the debug registers into the vir-
tual memory even when she has gained root privilege by
tools like SuperSU [78]. Moreover, to prevent the attacker
from replacing the stock kernel with a customized kernel
that enables the LKM, the OEM may add the kernel into the
secure boot chain and apply additional verification to the
kernel image. Note that forbidding the customized kernel
does not necessarily affect flashing a customized ROM, and
the third-party ROM developers can still develop their
ROMs based on the stock kernel.

6.3 A Practical Defense of NAILGUN Attack

As mentioned in Section 6.2.2, applying access control to the
debug registers would be a possible solution to mitigate
NAILGUN attack. In the ideal case, the restriction could be
achieved by hardware to avoid any software manipulation
in future devices. However, for the deployed devices, a soft-
ware-based restriction would be more practical. Thus, we
focus on designing a software-based mitigation mechanism
in this section.

6.3.1 Threat Model

We assume the attacker owns non-secure EL1 privilege and
aims to achieve privilege escalation via NAILGUN attack.
Since the status and management mechanism of debug
authentication signals varies in different SoCs, we make no
assumption on the current status of the signals and consider
the management mechanism is not available.

We assume that the Virtualization Extension is presented
on the target platform. This extension is an optional feature
for ARMv7-A architecture but becomes mandatory in
ARMv8-A architecture. Moreover, we assume the software
stack of the platform enforces a secure boot mechanism to
avoid direct manipulation of the privileged software image.

6.3.2 Design

We aim to apply a software-based access control mechanism
to avoid unexpected access to debug registers, and the privi-
lege level to implement themechanism is important to draw a
balance between security and usability. If it is implemented in
the non-secure EL1,malwarewith kernel privilege can bypass
it easily since they own the same privilege. Once the defense is
implemented in the secure state, it might introduce a signifi-
cant performance overhead due to the semantic gap between
the secure and non-secure state. In contrast, we find non-
secure EL2 to be a good workaround. On the one hand, the
high privilege prevents themalware from tampering with the
defensemechanism; on the other hand, EL1&0 Stage 2 transla-
tion introduced in Section 2.6 would provide an efficient
approach to restrict the access from EL1 to the debug register
evenwithout the semantics of EL1.

Fig. 10 shows the designed defense mechanism. The non-
secure EL1&0 Stage 1 translation is typically used by the

kernel to manage the virtual memory of applications, and we
leave it unmodified. Instead, the Stage 2 translation is enabled
as a gatekeeper to restrict the access to debug registers. When
the Stage 2 translation is enabled, the output address of Stage
1 translation is considered as an IPA and not processed by the
processor directly. The IPA is further translated to the PA
with the Stage 2 translation table. Therefore, we leverage the
Stage 2 translation table to mark the pages related to debug
registers as invalid, which leads to a translation fault if these
pages are accessed. With this design, even when an attack
owns the EL1 privilege to manipulate the Stage 1 translation
to access the debug registers, the Stage 2 translation stops the
attack by the translation fault. Although an additional transla-
tion layer is enabled, we consider it is relatively lightweight
compared to the traditional hypervisors (e.g., Xen [79], [80]
and KVM [81]) since the workload in EL2 is minimized. Our
evaluation in Section 6.3.4 also shows that the performance
overhead introduced by the additional translation layer is
negligible. Note that our defense mechanism can be directly
transplanted to other ARM architectures with Virtualization
Extension (i.e., ARM-A and ARMv8-R). For the ARM archi-
tectures that work with MPU, we can restrict the low-privi-
lege access (PL0 in ARMv7-R, unprivileged mode in ARMv7-
M, and non-secure modes in ARMv8-M) to debug registers
withMPU configuration.

Moreover, we consider the proposed restriction would
not affect regular applications and analysis systems men-
tioned in Challenge 1 of Section 6.1 since these applications
and systems normally achieve debugging via the traditional
debugging model with JTAG connections. In this model, the
access to the debug registers relies on the DAP and does not
go through the memory translation enforced by MMU. In
the ARMv8.4-A architecture, ARM also suggests restricting
the non-secure access to the debug registers performed in
the inter-processor debugging model.

6.3.3 Implementation

To verify the defense mechanism, we implement a proto-
type on top of the official firmware released by Raspberry
PI Foundation [82] and deploy it to a Raspberry PI 3 Model
B+ board. Specifically, we enforce the defense mechanism
before the booting of the official Linux kernel.

First, we reserve a continuous physical memory region at
the bottom of the non-secure memory (0x3effb000-
0x3effffff) for the Stage 2 translation table. To prevent
the EL0&1 access to the debug registers and the created
translation table, we clear bit[0] of the related table entries
to mark the corresponding mapping as invalid. For other
physical addresses, we use flat mapping to avoid additional
engineering effort. Note that the physical addresses of the
debug registers are decided by the SoC manufacturers, and
the related addresses on the Raspberry PI can be found in
the publicly available manual [83].

Fig. 10. Preventing NAILGUN via Stage 2 translation.

586 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Next, to enable the Stage 2 translation with the prede-
fined translation table, we write the base address of the table
(0x3effb000) to the BADDR bits of the Virtualization
Translation Table Base Register (VTTBR) and set the VM bit
of Hyp Configuration Register (HCR).

To reduce the lookup times of the translation table, we
give priority to using 1GB and 2MB blocks in the translation
table, and minimize the usage of 4k blocks. Note that
although the 64-bit architecture introduces a larger memory
address space, theminimal table lookup times in 32-bit archi-
tecture and 64-bit architecture are the same. Specifically, the
table lookup times for 1GB, 2MB, and 4KB blocks in the Stage
2 translation are 1, 2, and 3 times, respectively. Therefore, we
consider the performance overhead introduced by Stage-2
translation is similar in 32-bit and 64-bit architectures. How-
ever, the large address space in 64-bit architecture requires
more reserved memory for the Stage-2 translation table since
the number of entries increases. This might be mitigated by
using coarse-grained Stage-2 translation tables (e.g., 64KB
translation granule) in devices with limitedmemory.

6.3.4 Evaluation

Effectiveness Evaluation. To demonstrate the effectiveness of
the defense, we launch NAILGUN attack mentioned in Section
5.2.2 on a Raspberry PI 3 Mobel B+ board equipped with the
defense mechanism. As shown in Fig. 11, the access to the
debug registers is terminated with an error message indicat-
ing a translation fault. It illustrates that the proposed
defense mechanism has successfully prevented NAILGUN

on the platform.
Performance Evaluation. Based on the implementation on

Raspberry PI, we evaluate the performance of the proposed
defense mechanism with three open-source benchmarks (i.e.,
Nbench,nbench:zosxang, Sysbench [85], and Unixbench [86]). In
the evaluation, we run each benchmark 30 times with and
without the defense mechanism, respectively. Performance
scores without the defense mechanism are normalized as 1,
while scores of the defense-enabled system are presented as a
ratio to 1. The result shows that the performance overhead of
our defensemechanism is less than 1:1% in all cases.

Unixbench [86] evaluates the performance of Unix-like
systems with various tests (e.g., I/O intensive and pipe
throughput) and provides a weighted performance score of

the system. To achieve a comprehensive view, we leverage
different options of Unixbench (i.e., one copy, four copies,
and eight copies) to evaluate the performance of the system,
and the result is shown in Fig. 12a. Specifically, the perfor-
mance overhead of our defense mechanism is 0:30%, 0:54%,
and 1:03% while running with one copy, four copies, and
eight copies, respectively.

Nbench [84] evaluates the CPU performance with more
than ten test cases. Fig. 12b shows the result of six cases, and
the result of other tests are similar (less than 0.10% perfor-
mance decrease). As shown in the figure, the performance
drops by 0.41% inNeural Net test and less than 0.10% in other
tests.

Sysbench [85] is a multithreaded benchmark with arbi-
trarily complex workloads. With Sysbench, we evaluate the
performance of Memory Reading, Memory Writing, and Prime
Calculation in our system. For Prime Calculation, we set the
maximum number of the request as 20000. For Memory
Reading and Memory Writing, we configure the total block
size as 4KB, with the total memory size as 20GB. All tests
run with 16 threads while the remaining settings are
default. As indicated in Fig. 12c, the performance ofMemory
Reading and Memory Writing declines around 0.30%, and
that of Prime Calculation drops about 0.01%.

7 CONCLUSION

In this paper, we perform a comprehensive security analysis
of the ARM debugging features and summarize the security
implications. For a better understanding of the problem, we
investigate a series of ARM-based platforms powered by
different SoCs and deployed in various product domains.
Our investigation exposes an attack surface of the ARM
devices via the debugging architecture. To further verify the
implications, we craft a novel attack named NAILGUN, which
obtains sensitive information and achieves arbitrary pay-
load execution in a high-privilege mode from a low-privi-
lege mode via misusing the debugging features. Our
experiments on real-world devices with different ARM-A
architectures show that almost all the ARM-A platforms we
investigated are vulnerable to the attack. The analysis on
ARM-R and ARM-M architecture shows that these architec-
tures may also suffer from NAILGUN attack. Additionally, we
discuss potential countermeasures to our attack from differ-
ent layers of the ARM ecosystem to improve the security of
the commercial devices. Finally, we design a lightweight
defensemechanismbased onARMvirtualization technology
to restrict the access to the debug registers with a negligible
performance penalty.

Fig. 11. Effectiveness evaluation of the defense mechanism.

Fig. 12. Performance evaluation with different benchmarks.

NING ETAL.: REVISITING ARM DEBUGGING FEATURES: NAILGUN AND ITS DEFENSE 587

REFERENCES

[1] Intel, “64 and IA-32 architectures software developer’s manual,”
2016. [Online]. Available: https://www.intel.com/content/dam/
www/public/us/en/documents/manuals/64-ia-32-architectures-
software-developer-instruction-set-reference-manual-325383.pdf

[2] Intel, “Architecture instruction set extensions and future features
programming reference,” 2016. [Online]. Available: https://
software.intel.com/sites/default/files/managed/c5/15/
architecture-instruction-set-extensions-programming-reference.pdf

[3] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-assisted feedback fuzzing for OS kernels,” in
Proc. 26th USENIX Secur. Symp., 2017, pp. 167–182.

[4] J. Xu, D. Mu, X. Xing, P. Liu, P. Chen, and B. Mao, “Postmortem
program analysis with hardware-enhanced post-crash artifacts,”
in Proc. 26th USENIX Secur. Symp., 2017, pp. 17–32.

[5] ARM, “Architecture reference manual ARMv7-A and ARMv7-R
edition,” 2011. [Online]. Available: http://infocenter.arm.com/
help/index.jsp?topic¼/com.arm.doc.ddi0406c/index.html

[6] ARM, “ARMv8-A reference manual,” 2016. [Online]. Available:
http://infocenter.arm.com/help/index.jsp?topic¼/com.arm.doc.
ddi0487a.k/index.html

[7] ARM, “Embedded trace macrocell architecture specification,”
2011. [Online]. Available: http://infocenter.arm.com/help/
index.jsp?topic¼/com.arm.doc.ihi0014q/index.html

[8] ARM, “Embedded cross trigger,” 2009, [Online]. Available:
http://infocenter.arm.com/help/index.jsp?topic¼/com.arm.doc.
ddi0314h/Babhjchd.html

[9] IEEE, “Standard for test access port and boundary-scan
architecture,” 2013. [Online]. Available: https://standards.ieee.
org/findstds/standard/1149.1–2013.html

[10] Intel, “System debugger,” 2021. [Online]. Available: https://
software.intel.com/en-us/system-studio/system-debugger

[11] ARM, “DS-5 development studio,” 2010. [Online]. Available:
https://developer.arm.com/products/software-development-
tools/ds-5-development-studio

[12] OpenOCD, “Open on-chip debugger,” 2009. [Online]. Available:
http://openocd.org/

[13] ARM, “TrustZone security,” 2009. [Online]. Available: http://
infocenter.arm.com/help/index.jsp?topic¼/com.arm.doc.prd29-
genc-009492c/index.html

[14] Raspberry PI Foundation, “Model B+,” 2018. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-
plus/

[15] miniNodes, “ARM servers,” 2013. [Online]. Available: https://
www.mininodes.com/

[16] Packet, “Cloud service,” 2016. [Online]. Available: https://www.
packet.net/

[17] Scaleway, “Cloud service,” 2015. [Online]. Available: https://www.
scaleway.com/

[18] Motorola, “Nexus 6,” 2014. [Online]. Available: https://support.
motorola.com/products/cell-phones/android-series/nexus-6

[19] Samsung, “Exynos processors,” 2011. [Online]. Available:
https://www.samsung.com/semiconductor/minisite/exynos/

[20] Hisilicon, “Kirin processors,” 2012. [Online]. Available: http://
www.hisilicon.com/en/Products

[21] Xiaomi, “Redmi 6,” 2018. [Online]. Available: https://www.mi.
com/global/redmi-6/

[22] Z. Ning and F. Zhang, “Understanding the security of ARM
debugging features,” in Proc. 40th IEEE Symp. Secur. Privacy, 2019,
pp. 602–619.

[23] Zhenyu Ning, “Nailgun: Break the privilege isolation in ARM
devices,” 2019, [Online]. Available: https://github.com/
ningzhenyu/nailgun

[24] ARM, “CoreSight components technical reference manual,” 2009.
[Online]. Available: http://infocenter.arm.com/help/index.jsp?
topic¼/com.arm.doc.ddi0314h/index.html

[25] Project Zero, “Lifting the (hyper) visor: Bypassing Samsung’s
real-time kernel protection,” 2017. [Online]. Available:
https://googleprojectzero.blogspot.com/2017/02/lifting-
hyper-visor-bypassing-samsungs.html

[26] ARM, “Juno ARM development platform SoC technical reference
manual,” 2016. [Online]. Available: http://infocenter.arm.com/
help/topic/com.arm.doc.ddi0515b/

[27] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache
attack that works across cores and defies VM sandboxing–and its
application to AES,” in Proc. 36th IEEE Symp. Secur. Privacy, 2015,
pp. 591–604.

[28] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache
attacks,” in Proc. 11th ACM SIGSAC Symp. Inf. Comput. Commun.
Secur., 2016, pp. 353–364.

[29] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“Cache template attacks: Automating attacks on inclusive last-
level caches,” in Proc. 24th USENIX Secur. Symp., 2015,
pp. 897–912.

[30] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“ARMageddon: Cache attacks on mobile devices,” in Proc. 25th
USENIX Secur. Symp., 2016, pp. 549–564.

[31] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proc. 36th IEEE Symp. Secur.
Privacy, 2015, pp. 605–622.

[32] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Expos-
ing the perils of security-oblivious energy management,” in Proc.
26th USENIX Secur. Symp., 2017, pp. 1057–1074.

[33] NXP, “i.MX53 quick start board,” 2011. [Online]. Available: https://
www.nxp.com/docs/en/user-guide/IMX53QKSRTRQSG.pdf

[34] D. Zhang, “A set of code running on i.MX53 quick start board,”
2014. [Online]. Available: https://github.com/finallyjustice/
imx53qsb-code

[35] OpenSSL Software Foundation, “OpenSSL cryptography and SSL/
TLS toolkit,” 2017. [Online]. Available: https://www.openssl.org/

[36] ARM, “Trusted firmware,” 2015. [Online]. Available: https://
github.com/ARM-software/arm-trusted-firmware

[37] Linaro, “ARMdevelopment platform software,” 2015. [Online]. Avail-
able: https://releases.linaro.org/members/arm/platforms/15.09/

[38] Huawei, “Ascend mate 7,” 2014. [Online]. Available: https://
consumer.huawei.com/en/support/phones/mate7/

[39] Motorola, “E4 plus,” 2017. [Online]. Available: https://www.
motorola.com/us/products/moto-e-plus-gen-4

[40] AmishTech, “Motorola E4 plus - More than just a fingerprint reader,”
2017. [Online]. Available: https://community.sprint.com/t5/
Android-Influence/Motorola-E4-Plus-More-Than-Just-a-Fingerprint-
Reader/ba-p/979521

[41] A. Grush, “Huawei unveils big ambitions with the 6-inch Huawei
ascend mate 7,” 2014. [Online]. Available: https://consumer.
huawei.com/nl/press/news/2014/hw-413119/

[42] R. Sasmal, “Fingerprint scanner: The ultimate security system,” 2014.
[Online]. Available: https://in.c.mi.com/thread-239612–1-0.html

[43] Fingerprints, “FPC1020 touch sensor,” 2014. [Online]. Available:
https://www.fingerprints.com/technology/hardware/sensors/
fpc1020/

[44] Fingerprints, “Product specification FPC1020,” 2014. [Online]. Avail-
able: http://www.shenzhen2u.com/doc/Module/Fingerprint/710-
FPC1020_PB3_Product-Specification.pdf

[45] Z. Wu, “FPC1020 driver,” 2015. [Online]. Available: https://
android.googlesource.com/kernel/msm/
þ/9f4561e8173cbc2d5a5cc0fcda3c0becf5ca9c74

[46] Arm, “Fixed Virtual Platforms,” 2014. [Online]. Available:
https://developer.arm.com/tools-and-software/simulation-
models/fixed-virtual-platforms

[47] Arm, “Arm architecture reference manual supplement Armv9, for
Armv9-A architecture profile,” 2021. [Online]. Available: https://
developer.arm.com/documentation/ddi0608/latest

[48] ARM, “ARM architecture reference manual supplement - ARMv8,
for the ARMv8-R AArch32 architecture profile,” 2020. [Online].
Available: https://developer.arm.com/documentation/ddi0568/
latest/

[49] ARM, “Arm architecture reference manual supplement - Armv8,
for Armv8-R AArch64 architecture profile,” 2021. [Online]. Avail-
able: https://developer.arm.com/documentation/ddi0600/latest/

[50] ARM, “ARMv7-M architecture reference manual,” 2021. [Online].
Available: https://developer.arm.com/documentation/ddi0403/
latest/

[51] ARM, “ARMv8-M architecture reference manual,” 2021. [Online].
Available: https://developer.arm.com/documentation/ddi0553/
latest/

[52] Dialog Semiconductor, “SmartBond DA1469x product family,”
2019. [Online]. Available: https://www.dialog-semiconductor.
com/products/da1469x-product-family

[53] NXP, “LPC552x/S2x: MainstreamArm Cortex-M33-based microcon-
troller family,” 2019. [Online]. Available: https://www.nxp.com/
products/processors-and-microcontrollers/arm-microcontrollers/
general-purpose-mcus/lpc5500-cortex-m33/lpc552x-s2x-mainstream-
arm-cortex-m33-based-microcontroller-family:LPC552x-S2x

[54] Nordic Semiconductor, “nRF9160,” 2020. [Online]. Available:
https://infocenter.nordicsemi.com/pdf/nRF9160_PS_v2.0.pdf

588 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.k/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.k/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.k/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0314h/Babhjchd.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0314h/Babhjchd.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0314h/Babhjchd.html
https://standards.ieee.org/findstds/standard/1149.1--2013.html
https://standards.ieee.org/findstds/standard/1149.1--2013.html
https://software.intel.com/en-us/system-studio/system-debugger
https://software.intel.com/en-us/system-studio/system-debugger
https://developer.arm.com/products/software-development-tools/ds-5-development-studio
https://developer.arm.com/products/software-development-tools/ds-5-development-studio
http://openocd.org/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.mininodes.com/
https://www.mininodes.com/
https://www.packet.net/
https://www.packet.net/
https://www.scaleway.com/
https://www.scaleway.com/
https://support.motorola.com/products/cell-phones/android-series/nexus-6
https://support.motorola.com/products/cell-phones/android-series/nexus-6
https://www.samsung.com/semiconductor/minisite/exynos/
http://www.hisilicon.com/en/Products
http://www.hisilicon.com/en/Products
https://www.mi.com/global/redmi-6/
https://www.mi.com/global/redmi-6/
https://github.com/ningzhenyu/nailgun
https://github.com/ningzhenyu/nailgun
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0314h/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0314h/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0314h/index.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0515b/
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0515b/
https://www.nxp.com/docs/en/user-guide/IMX53QKSRTRQSG.pdf
https://www.nxp.com/docs/en/user-guide/IMX53QKSRTRQSG.pdf
https://github.com/finallyjustice/imx53qsb-code
https://github.com/finallyjustice/imx53qsb-code
https://www.openssl.org/
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://releases.linaro.org/members/arm/platforms/15.09/
https://consumer.huawei.com/en/support/phones/mate7/
https://consumer.huawei.com/en/support/phones/mate7/
https://www.motorola.com/us/products/moto-e-plus-gen-4
https://www.motorola.com/us/products/moto-e-plus-gen-4
https://community.sprint.com/t5/Android-Influence/Motorola-E4-Plus-More-Than-Just-a-Fingerprint-Reader/ba-p/979521
https://community.sprint.com/t5/Android-Influence/Motorola-E4-Plus-More-Than-Just-a-Fingerprint-Reader/ba-p/979521
https://community.sprint.com/t5/Android-Influence/Motorola-E4-Plus-More-Than-Just-a-Fingerprint-Reader/ba-p/979521
https://consumer.huawei.com/nl/press/news/2014/hw-413119/
https://consumer.huawei.com/nl/press/news/2014/hw-413119/
https://in.c.mi.com/thread-239612--1-0.html
https://www.fingerprints.com/technology/hardware/sensors/fpc1020/
https://www.fingerprints.com/technology/hardware/sensors/fpc1020/
http://www.shenzhen2u.com/doc/Module/Fingerprint/710-FPC1020_PB3_Product-Specification.pdf
http://www.shenzhen2u.com/doc/Module/Fingerprint/710-FPC1020_PB3_Product-Specification.pdf
https://android.googlesource.com/kernel/msm/+/9f4561e8173cbc2d5a5cc0fcda3c0becf5ca9c74
https://android.googlesource.com/kernel/msm/+/9f4561e8173cbc2d5a5cc0fcda3c0becf5ca9c74
https://android.googlesource.com/kernel/msm/+/9f4561e8173cbc2d5a5cc0fcda3c0becf5ca9c74
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/documentation/ddi0608/latest
https://developer.arm.com/documentation/ddi0608/latest
https://developer.arm.com/documentation/ddi0568/latest/
https://developer.arm.com/documentation/ddi0568/latest/
https://developer.arm.com/documentation/ddi0600/latest/
https://developer.arm.com/documentation/ddi0403/latest/
https://developer.arm.com/documentation/ddi0403/latest/
https://developer.arm.com/documentation/ddi0553/latest/
https://developer.arm.com/documentation/ddi0553/latest/
https://www.dialog-semiconductor.com/products/da1469x-product-family
https://www.dialog-semiconductor.com/products/da1469x-product-family
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33/lpc552x-s2x-mainstream-arm-cortex-m33-based-microcontroller-family:LPC552x-S2x
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33/lpc552x-s2x-mainstream-arm-cortex-m33-based-microcontroller-family:LPC552x-S2x
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33/lpc552x-s2x-mainstream-arm-cortex-m33-based-microcontroller-family:LPC552x-S2x
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33/lpc552x-s2x-mainstream-arm-cortex-m33-based-microcontroller-family:LPC552x-S2x
https://infocenter.nordicsemi.com/pdf/nRF9160_PS_v2.0.pdf

[55] Renesas Electronics Corporation, “48MHz Arm Cortex-M23 ultra-
low power general purpose microcontroller,” 2020. [Online]. Avail-
able: https://www.renesas.com/us/en/products/microcontrollers-
microprocessors/ra-cortex-m-mcus/ra2l1–48mhz-arm-cortex-m23-
ultra-low-power-general-purpose-microcontroller

[56] STMicroelectronics, “STM32L5 Series,” 2020. [Online]. Available:
https://www.st.com/en/microcontrollers-microprocessors/
stm32l5-series.html

[57] Microchip Technology Inc., “World-Class, Award-Winning SAM
L10 and SAM L11 Microcontroller Family,” 2018. [Online]. Avail-
able: https://www.microchip.com/design-centers/32-bit/sam-
32-bit-mcus/sam-l-mcus/sam-l10-and-l11-microcontroller-family

[58] NXP, “LPC55S69-EVK: LPCXpresso55S69Development Board,” 2019.
[Online]. Available: https://www.nxp.com/design/development-
boards/lpcxpresso-boards/lpcxpresso55s69-development-board:
LPC55S69-EVK

[59] Nordic Semiconductor, “nRF5340,” 2020. [Online]. Available:
https://infocenter.nordicsemi.com/pdf/nRF5340_PS_v1.0.pdf

[60] D. Balzarotti et al., “An experience in testing the security of real-
world electronic voting systems,” IEEE Trans. Softw. Eng., vol. 36,
no. 4, pp. 453–473, Jul./Aug. 2010.

[61] S. Clark, T. Goodspeed, P. Metzger, Z. Wasserman, K. Xu, and M.
Blaze, “Why (special agent) Johnny (still) can’t encrypt: A security
analysis of the APCO project 25 two-way radio system,” in Proc.
20th USENIX Secur. Symp., 2011, Art. no. 4.

[62] L. Cojocar, K. Razavi, and H. Bos, “Off-the-shelf embedded devi-
ces as platforms for security research,” in Proc. 10th Eur. Workshop
Syst. Secur., 2017, Art. no. 1.

[63] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: Sys-
tem-wide security testing of real-world embedded systems
software,” in Proc. 27th USENIX Secur. Symp., 2018, pp. 309–326.

[64] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. A.
Mohammed, and S. A. Zonouz, “Hey, My malware knows phys-
ics! Attacking PLCs with physical model aware rootkit,” in Proc.
24th Netw. Distrib. Syst. Secur. Symp., 2017, Art. no. 55.

[65] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling
near-real-time dynamic analyses of embedded systems,” in Proc.
9th USENIXWorkshop Offensive Technol., 2015, Art. no. 7.

[66] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, “Towards a practical
solution to detect code reuse attacks onARMmobile devices,” in Proc.
4thWorkshopHardwareArchitect. Support Secur. Privacy, 2015,Art. no. 3.

[67] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy, “A security
analysis of an in-vehicle infotainment and app platform,” in Proc.
10th USENIXWorkshop Offensive Technol., 2016, pp. 232–243.

[68] Z.Ning andF. Zhang, “Ninja: Towards transparent tracing anddebug-
ging onARM,” inProc. 26thUSENIXSecur. Symp., 2017, pp. 33–49.

[69] J. Zaddach et al., “AVATAR: A framework to support dynamic
security analysis of embedded systems’ firmwares,” in Proc. 21st
Netw. Distrib. Syst. Secur. Symp., 2014, Art. no. 8.

[70] A. Abbasi, T. Holz, E. Zambon, and S. Etalle, “ECFI: Asynchro-
nous control flow integrity for programmable logic controllers,”
in Proc. 33rd Annu. Comput. Secur. Appl. Conf., 2017, pp. 437–448.

[71] Z. B. Aweke et al., “ANVIL: Software-based protection against
next-generation rowhammer attacks,” in Proc. 21st ACM Int. Conf.
Archit. Support Program. Lang. Operating Syst., 2016, pp. 743–755.

[72] J. Demme et al., “On the feasibility of online malware detection
with performance counters,” in Proc. 40th ACM/IEEE Int. Symp.
Comput. Archit., 2013, pp. 559–570.

[73] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, and T.
Eisenbarth, “AutoLock: Why cache attacks on ARM are harder than
You think,” inProc. 26thUSENIXSecur. Symp., 2017, pp. 1075–1091.

[74] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Mon-
rose, “SoK: The challenges, pitfalls, and perils of using hardware
performance counters for security,” in Proc. 40th IEEE Symp. Secur.
Privacy, 2019, pp. 20–38.

[75] F. Zhang, K. Leach, A. Stavrou, and H. Wang, “Using hardware
features for increased debugging transparency,” in Proc. 36th
IEEE Symp. Secur. Privacy, 2015, pp. 55–69.

[76] S. Skorobogatov, “Fault attacks on secure chips: From glitch to
flash,” 2011. [Online]. Available: https://www.cl.cam.ac.uk/
sps32/ECRYPT2011_1.pdf

[77] NXP, “i.MX53 multimedia applications processor reference manual,”
2012. [Online]. Available: https://cache.freescale.com/files/32bit/
doc/ref_manual/iMX53RM.pdf

[78] J. Jongma, “SuperSU,” 2012. [Online]. Available: https://android.
googlesource.com/kernel/msm/þ/9f4561e8173cbc2d5a5cc0fcda
3c0becf5ca9c74.

[79] Xen project, “Xen ARM with virtualization extensions,” 2014.
[Online]. Available: https://wiki.xenproject.org/wiki/Xen_ARM_
with_Virtualization_Extensions.

[80] J.-Y. Hwang et al., “Xen on ARM: System virtualization using Xen
hypervisor for ARM-based secure mobile phones,” in Proc. 5th
IEEE Consum. Commun. Netw. Conf., 2008, pp. 257–261.

[81] C. Dall and J. Nieh, “KVM/ARM: The design and implementation
of the Linux ARM hypervisor,” in Proc. 19th Int. Conf. Archit.
Support Program. Lang. Oper. Syst., 2014, pp. 333–348.

[82] Raspberry PI Foundation, “Raspbian kernel source code,” 2021.
[Online]. Available: https://github.com/raspberrypi/linux

[83] Raspberry PI Foundation, “Raspberry PI Processors,” 2021.
[Online]. Available: https://www.raspberrypi.com/documentation/
computers/processors.html

[84] U. F. Mayer, “Nbench,” 2014. [Online]. Available: https://github.
com/zosxang/nbench

[85] Alexey Kopytov, “Sysbench,” 2014. [Online]. Available: https://
github.com/akopytov/sysbench

[86] Byte Magazine, “Unixbench,” 2015. [Online]. Available: https://
github.com/kdlucas/byte-unixbench

Zhenyu Ning received the PhD degree in com-
puter science fromWayne State University, Detroit,
Michigan, in 2020. He is a research assistant pro-
fessor with the Department of Computer Science
and Engineering, Southern University of Science
and Technology (SUSTech). His research interests
include security and privacy, including system
security, mobile security, IoT security, trusted exe-
cution environment, hardware-assisted security.

Chenxu Wang received the bachelor’s degree in
computer science and engineering from the South-
ern University of Science and Technology (SUS-
Tech), Shenzhen, China. He is currently working
toward the Joint PhD degree in computing at the
Hong Kong Polytechnic University, Hong Kong. His
research interests include virtualization and trusted
execution environment on armarchitecture.

Yinhua Chen received the bachelor’s degree in
computer science and engineering from the South-
ern University of Science and Technology (SUS-
Tech), Shenzhen, China. He is currently working
toward the master’s degree in computer science
and engineering at the Southern University of Sci-
ence and Technology, Shenzhen, China. His
research interests include system security and virtu-
alization.

Fengwei Zhang is currently an associate professor
with theDepartment of Computer Science andEngi-
neering, Southern University of Science and Tech-
nology (SUSTech). His primary research interests
include the areas of systems security, with a focus
on trustworthy execution, hardware-assisted secu-
rity, debugging transparency, and plausible deniabil-
ity encryption. Before joining SUSTech, he spent
four years as an assistant professor with the Depart-
ment of Computer Science,WayneStateUniversity.

Jiannong Cao is currently the Otto Poon
Charitable Foundation professor in data science
and the chair professor of distributed and mobile
computing with the Department of Computing,
Hong Kong Polytechnic University (PolyU). His
research interests include distributed systems
and blockchain, wireless sensing and networking,
big data and machine learning, and mobile cloud
and edge computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

NING ETAL.: REVISITING ARM DEBUGGING FEATURES: NAILGUN AND ITS DEFENSE 589

https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ra2l1--48mhz-arm-cortex-m23-ultra-low-power-general-purpose-microcontroller
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ra2l1--48mhz-arm-cortex-m23-ultra-low-power-general-purpose-microcontroller
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ra2l1--48mhz-arm-cortex-m23-ultra-low-power-general-purpose-microcontroller
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l5-series.html
https://www.microchip.com/design-centers/32-bit/sam-32-bit-mcus/sam-l-mcus/sam-l10-and-l11-microcontroller-family
https://www.microchip.com/design-centers/32-bit/sam-32-bit-mcus/sam-l-mcus/sam-l10-and-l11-microcontroller-family
https://www.nxp.com/design/development-boards/lpcxpresso-boards/lpcxpresso55s69-development-board:LPC55S69-EVK
https://www.nxp.com/design/development-boards/lpcxpresso-boards/lpcxpresso55s69-development-board:LPC55S69-EVK
https://www.nxp.com/design/development-boards/lpcxpresso-boards/lpcxpresso55s69-development-board:LPC55S69-EVK
https://infocenter.nordicsemi.com/pdf/nRF5340_PS_v1.0.pdf
https://www.cl.cam.ac.uk/ sps32/ECRYPT2011_1.pdf
https://www.cl.cam.ac.uk/ sps32/ECRYPT2011_1.pdf
https://cache.freescale.com/files/32bit/doc/ref_manual/iMX53RM.pdf
https://cache.freescale.com/files/32bit/doc/ref_manual/iMX53RM.pdf
https://android.googlesource.com/kernel/msm/+/9f4561e8173cbc2d5a5cc0fcda3c0becf5ca9c74.
https://android.googlesource.com/kernel/msm/+/9f4561e8173cbc2d5a5cc0fcda3c0becf5ca9c74.
https://android.googlesource.com/kernel/msm/+/9f4561e8173cbc2d5a5cc0fcda3c0becf5ca9c74.
https://android.googlesource.com/kernel/msm/+/9f4561e8173cbc2d5a5cc0fcda3c0becf5ca9c74.
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions.
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions.
https://github.com/raspberrypi/linux
https://www.raspberrypi.com/documentation/computers/processors.html
https://www.raspberrypi.com/documentation/computers/processors.html
https://github.com/zosxang/nbench
https://github.com/zosxang/nbench
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

