
HART: Hardware-assisted Kernel Module
Tracing on Arm

Yunlan Du1,?, Zhenyu Ning2,?, Jun Xu3, Zhilong Wang4, Yueh-Hsun Lin5,
Fengwei Zhang2(�), Xinyu Xing4, and Bing Mao1

1 Nanjing University, China
2 Southern University of Science and Technology, China

3 Stevens Institute of Technology, USA
4 Pennsylvania State University, USA
5 JD Silicon Valley R&D Center, USA

Abstract. While the usage of kernel modules has become more preva-
lent from mobile to IoT devices, it poses an increased threat to com-
puter systems since the modules enjoy high privileges as the main kernel
but lack the matching robustness and security. In this work, we pro-
pose HART, a modular and dynamic tracing framework enabled by the
Embedded Trace Macrocell (ETM) debugging feature in Arm proces-
sors. Powered by even the minimum supports of ETM, HART can trace
binary-only modules without any modification to the main kernel effi-
ciently, and plug and play on any module at any time. Besides, HART
provides convenient interfaces for users to further build tracing-based
security solutions, such as the modular AddressSanitizer HASAN we
demonstrated. Our evaluation shows that HART and HASAN incur the
average overhead of 5% and 6% on 6 widely-used benchmarks, and
HASAN detects all vulnerabilities in various types, proving their effi-
ciency and effectiveness.

Keywords: kernel module, dynamic tracing, ETM, Arm

1 Introduction

To enhance the extensibility and maintainability of the kernel, Linux allows
third parties to design their own functions (e.g., hardware drivers) to access
kernel with loadable kernel modules. Unlike the main kernels developed by ex-
perienced experts with high code quality, the kernel modules developed by third
parties lack the code correctness and testing rigorousness that happens with the
core, resulting in more security flaws lying in the kernel modules. Some kernel
vulnerability analyses [25,40] show that CVE patches to the Linux repository
involving kernel drivers comprise roughly 19% of commits from 2005 to 2017.
The conditions only worsen in complex ecosystems like Android and smart IoT
devices. In 2017, a study on vulnerabilities in the Android ecosystem [39] shows
that 41% of 660 collected bugs came from kernel components, most of which
were device drivers.

? These authors contributed equally to this work.



2 Y. Du et al.

To mitigate the threats of vulnerable kernel modules, the literature brings
three categories of solutions. As summarized in Table 1, all these solutions carry
conditions that limit their use in practice. The first category of solution is to
detect illegal memory access [5,6,11,16] at run-time, aiming to achieve mem-
ory protection in the kernel. As such solutions require to instrument memory
accesses and perform execution-time validation, they need source code and in-
cur high performance overhead. These properties limit solutions in this cate-
gory for only debugging and testing. The second category of approaches ex-
plores to ensure the integrity of the kernel [23,26,53,60,64], including control
flow, data flow and code integrity. However, these strategies introduce signifi-
cant computation overhead and often require extensive modification to the main
kernel. The last category of solutions isolates the modules from the core com-
ponents [22,24,31,48,51,54,58,61,65], so as to confine the potentially corrupted
drivers running out of the kernel. By design, the isolation often requires source
code and comes with significant instrumentation to the kernel and the driver.

Table 1: Comparison between existing kernel protection works and ours. Non-
intrusive represents whether the tools have system-level modification of kernel,
user space libraries, etc. (3 = yes, 7 = no, Q = partially supported).

Approach
Category

Binary
-support

Non
-intrusive

Low
overhead

Representative Works
(in the Order of Time)

Memory
Debugger

7 7 7
Slub debug [5], Kmemleak [16],
Kmemcheck [11], KASAN [6]

Integrity
Protection

7 7 Q
KOP [23], HyperSafe [60], HUKO [64],
KCoFI [26], DFI for kernel [53]

Kernel
Isolation

7 7 Q
Nooks [54], SUD [24], Livewire [22],
SafeDrive [65], SecVisor [51]

Our method 3 3 3 HASAN

To overcome these limitations, we propose HART, a high performance trac-
ing framework on Arm. The motivation of HART is to dynamically monitor the
execution of the third-party Linux kernel modules even without module source
code. HART utilizes the ETM debugging component [9] for light-weight trac-
ing of both control flow and data access. Combing hardware configurations and
software hooks, HART further restricts the tracing to selectively work on spe-
cific module(s). With the suuport of the open interfaces provided by HART,
various security solutions against module vulnerabilities can be established. We
then demonstrate a modular AddressSanitizer named HASAN. Compared with
the previous solutions, our approach is much less intrusive as it requires zero
modification to other kernel components, and is fully compatible with any com-
mercial kernel module since it requires no access to any source code. Besides, our
empirical evaluation shows that HASAN can detect the occurrence of memory
corruptions in binary-only modules with a negligible performance overhead.

The design of HART overcomes several barriers. First, for generality, we
need to support ETM with the minimum configuration, particularly the size
of Embedded Trace Buffer (ETB) that stores the trace. Take Freescale i.MX53
Quick Start Board as an example. Its ETB has a size of 4KB and can get fully
occupied very frequently. The second barrier is that many implementations of



HART: Hardware-assisted Kernel Module Tracing on Arm 3

ETB raise no interrupt when the buffer is full, thereby the trace can be frequently
overwritten. To tackle the above two challenges and retrieve the entire trace
successfully, we leverage the Performance Monitoring Unit (PMU) to throw an
interrupt after the CPU executes a certain number of instructions, ensuring that
the trace size will never exceed the capacity of ETB. Finally, to optimize the
performance of HART, we design an elastic scheduling to assure the decoding
thread of rapid parsing while avoiding the waste of CPU cycles. Under this
scheduling, the thread will occupy the CPU longer while the trace grows faster.
Otherwise, the thread will yield the control of CPU more frequently.

Our main contributions are summarized as follows.
– We design HART, an ETM-assisted tracing framework for kernel modules.

With the minimal hardware requirements of ETM, it achieves low intrusive-
ness, high efficiency, and binary-compatibility for kernel module protections.

– We implement HART with Freescale i.MX53 Quick Start Board running
Linux 32-bit systems. Our evaluation with 6 widely used module benchmarks
shows that HART incurs an average overhead of 5%.

– We build HASAN on the top of HART to detect memory vulnerabilities
triggered in the target module(s). We evaluate HASAN on 6 existing vulner-
abilities ported from real-world CVE cases and the above benchmarks. All the
vulnerabilities are detected with an average overhead of only 6%.

2 Background and Problem Scope

In this section, we first introduce the background of kernel module and ETM,
and then define our problem scope.

2.1 Loadable Kernel Module

In practice, the third-party modules are mostly developed as loadable kernel
modules (LKM). An LKM is an object file that contains code to extend the main
kernel, such as building support for new hardware, installing new file systems,
etc. For the ease of practical use, an LKM can be loaded at anytime on-demand
and unloaded once the functionality is no longer required. To support accesses
from the user space, LKM usually registers a group of its functions as callbacks
to system calls in the kernel (e.g., ioctl). In Figure 1, a client (e.g., user space
application) can execute those callbacks via the system calls. Sitting in the kernel
space, an LKM can also freely invoke functions exported by the main kernel.

2.2 Embedded Tracing Microcell

ETM is a hardware debugging feature in Arm processors since two decades
ago. It works by tracing the control flow and memory accesses of a software’s
execution. Being aided by hardware, ETM incurs less than 0.1% performance
overhead [43], barely decelerating the normal execution. While ETMs on different
chips have varied properties, it generally follows the model in Figure 2. When



4 Y. Du et al.

Run
callback

Invoke
callback

Run kernel
function

Callback 
returns

Call kernel
functionModule

Kernel
timeline

enter
enter

Register
callback

exit

User
Space

System 
call

System 
call

exit

Fig. 1: Interactions between an LKM and the users space as well as kernel space.

CPU

Instruction Execution Embedded Trace Macrocell
(ETM)

System on Chip

Embedded Trace Buffer
(ETB)

Trace

Trace Output

(Data access, Control flow)

Fig. 2: A general model of ETM.

ETM ETB

Target
Module HART

Client

Hook
Kernel Space

SoC

User Space Data
Control

PMU

q PMU Control
q ETM Control
q ETB Control
q Trace Decoder

Fig. 3: Architecture of HART.

CPU executes instructions, ETM collects information about control flows and
memory accesses. Such information can be compressed and stored into an on-
chip memory called Embedded Trace Buffer (ETB), which is accessible through
mapped I/O or debugging interfaces such as JTAG or Serial Wire interface.

Trace generated by ETM follows standard formats. A Sync packet is produced
at the start of execution, containing information about the entry point and
the process ID (CID); a P-header packet indicates the number of sequential
instructions and not-taken instructions executed since the last packet; a Data

packet records the memory address to be accessed by the instruction. We can
fully reconstruct the control flow and memory accesses by decoding such packets.

2.3 Problem Scope

We consider the generality of our work from two aspects. On the one hand,
the framework should have compatibility with the majority (if not all) of ETM.
We investigate the ETM features on several early and low-end SoCs in Table 2,
and summarize the following most preliminary ETM configuration for HART to
work with: ¬ETM supports tracing of both control flow and memory accesses.
­ETM supports filtering by address range. ®ETB is available for trace storage,
yet with a limited buffer size - 4KB. ¯ETB raises no interrupts when it gets full.

Table 2: ETM and ETB on early SoCs.

SoC Devices
ETB
Size

ETM Feature

DATa ARFb

Qualcomm Snapdragon 200 [18] Xperia E1, Moto E ≥ 4KB × X
Samsung Exynos 3110 [17] Galaxy S, Nexus S ≥ 4KB X X

Apple A4 [7] iPhone 4 ≥ 4KB X X
Huawei Kirin 920 [36] Mate 7, Honor 6 ≥ 4KB × X

NXP i.MX53 [49] iMX53 Quick Start Board 4KB X X
Arm Juno [4] Juno r0 Board 64KB × X

a: Data Address Trace b: Address Range Filter



HART: Hardware-assisted Kernel Module Tracing on Arm 5

On the other hand, the framework should not impose restrictions on the
target modules. We then accordingly make a minimal group of assumptions
about the target module: ¬Source code of the target module is unavailable.
­The target module and other kernel components shall be intact without any
modification. ®The target module is not intentionally malicious.

3 HART Design and Implementation

In this section, we concentrate on HART, our selective tracing framework for
kernel modules. We first give an overview of HART in Figure 3. HART is
designed as a standalone kernel driver. At the high-level, it manages ETM (and
ETB) to trace the execution of target modules, and PMU to raise interrupts to
address the problem of overwritten trace in ETB, and a Trace Decoder to parse
the ETM trace. HART also hooks entrances/exits to/from the target modules,
to coordinate with PMU and provide open interfaces for further usage. Following
the workflow, we then delve into the details of our design and implementation.

3.1 HART Design

Initialization for Tracing Before starting a module, the Linux kernel per-
forms a set of initialization, including loading data and code from the module,
relocating the references to external and internal symbols, and running the init

function of the module. HART intercepts the initialization to prepare for trac-
ing. Details are as follows.

First, HART builds a profile for the module, with some necessary information
about the loading address, the init function, and the kernel data structure that
manages this module, for later usage. Since such information will be available
after the kernel has finished loading the module, we capture the initialization
at this point of time with a callback registered through the trace-point in the
load module kernel function, without intrusion to the kernel.

Then, HART hooks the entrances to the module and the exits from the
module, which is the base of PMU management and open interfaces for users of
HART. As Figure 1 depicted before, the modules are mainly entered and exited
either through the callbacks registered to the kernel, or the external functions
invoked by such callbacks. We deal with different cases as follows.

HART symbols:
addr2 T hart__kmalloc

module .text
addr: ebfffffe bl 0 <__kmalloc>

kernel symbols:
addr1 T __kmalloc

module .text
addr: ebfffffe bl 0 <__kmalloc>

rewrite

rewrite

Stock
Kernel

HART

module code in mem:
addr1: < func1_entry >

module .data
addr: func1_sym

updateStock
Kernel

HART code in mem:
addr2: < func1_hart_entry >

module .data
addr: func1_sym

update
HART

(b) Relocation of external calls(a) Relocation of internal function references

Fig. 4: Relocation of external calls and internal function references in modules.



6 Y. Du et al.

In the first case, those callbacks are typically functions within the module,
waiting for the invoking from the kernel. They are usually registered through
code pointers stored in the .data segment. In the course of module loading, the
code pointers will be relocated to the run-time addresses during the initializa-
tion, so that we can intercept the relocation and alter these pointers to target
the wrappers defined by HART. The comparison before and after the HART’s
alteration in the code pointers’ relocation can be observed from Figure 4a, pre-
sented with concrete examples. Thus, our wrappers are successfully registered
as the callbacks to be invoked by the kernel, and can perform a series of HART-
designed handlers, while ensuring the normal usage of original functions.

In the other case that callbacks invoke external functions, such external sym-
bols (e.g., kmalloc) also need a similar relocation to fix their references to the
run-time addresses. Likewise, HART intercepts such relocation and directs the
external symbols to the HART-designed wrappers, as is shown in Figure 4b. So
far, as we consider both conditions, all of the entrances and exits are under the
control of HART via the adjusted relocation to our wrappers.

Finally, HART gets ETM and ETB online for tracing. To be specific, HART
allocates a large continuous buffer hart buf, for the sake of backing up ETB
data. In our design, its buffer size is configured as 4MB. Meanwhile, HART
spawns a child thread, which monitors data in hart buf and does continuous
decoding. We will cover more details about the decoding later in Section 3.1.
Then, HART enables ETM with ETB, and configures ETM to only trace the
range that stores the module. So far, HART finishes the initialization and starts
the module by invoking the module’s init function.

Continuous and Selective Tracing After the above initialization, ETM will
trace execution of the module and store its data in ETB. Under the assumption
that the ETB hardware raises no interrupt to alert HART to a full ETB, the
remaining challenge is to timely interrupt the module before ETB is filled up.
In this work, HART leverages the instruction counter shipped with PMU.

Specifically, we start PMU on counting the instructions executed by the CPU.
Once the number of instructions hits a threshold, PMU will raise an interrupt,
during which HART can copy ETB data out to hart buf. Generally, an Arm
instruction can lead to at most 6 bytes of trace data 6. This means a 4KB ETB
can support the execution of at least 680 instructions. Also considering that the
PMU interrupts often come with a skid (less than 10 instructions [43]), we set up
680-10 as the threshold for PMU. In our evaluation with real-world benchmarks,
we observe the threshold is consistently safe for avoiding overflow in ETB.

Though PMU aids HART in preventing trace loss, it causes an extra is-
sue. PMU counts every instruction executed on the CPU, regardless of the con-
text. This means PMU will interrupt not only the target module, but also the

6 Some instructions (e.g., LDM) carry more than 6 bytes of trace data, but appear in a
relatively few cases. We also take into account the data generated by data access in
ETB. Actually, the information in the raw trace output is highly compressed, and a
single byte in the trace output can represent up to 16 instructions in some cases.



HART: Hardware-assisted Kernel Module Tracing on Arm 7

Table 3: Wrapper for func1 in Fig. 4a.

1 ENTRY(func1_hart):
2 SAVE_CTX //save context
3 MOV R0,LR //pass and save LR in HART
4 BL resume_pmu //call resume_pmu
5 MOV LR,R0 //return addr of ori. func1
6 RESTORE_CTX //restore context
7 BL LR //call original func1
8 SAVE_CTX //save context
9 BL stop_pmu //call stop_pmu
10 MOV LR,R0 //return LR from HART
11 RESTORE_CTX //restore context
12 BL LR //return back

Table 4: Wrapper for kmalloc.

1 void * hart__kmalloc(size_t size,
2 gfp_t flags){
3 /*stop PMU*/
4 cur_cnt = stop_pmu();
5 /*instrumentation hooks*/
6 pre_instrumention();
7 /*original kmalloc*/
8 addr = __kmalloc(size, flags);
9 /*instrumentation hooks*/
10 post_instrumentation();
11 /*resume PMU*/
12 reset_pmu(cur_cnt);
13 return addr;
14 }

other kernel components, leading to high-frequency interruptions and tremen-
dous down-gradation in the entire system. To restrict PMU to count inside the
selective module(s), we rely on the hooks HART plants during initialization.
When the kernel enters the module via a callback, the execution will first enter
our wrapper function. In the wrapper, we resume PMU to count instructions,
invoke the original callback, and stop PMU after the callback returns in order, as
is shown in Table 3. Our wrapper avoids any modification to the stack and pre-
serves all needed registers when stop/resume PMU, so as to keep the context to
call the original init and maintain the context created by init back to the ker-
nel. As aforementioned, the target module may also call for external functions,
which are also hooked. In those hooks, HART first stops PMU, then invokes the
intended external function, and finally resumes PMU. Table 4 demonstrates the
wrapper function of kmalloc when it is called by the target module.

The last challenge derives from handling PMU interrupts. By intuition, we
can simply register a handler to the kernel, which stops PMU, backs up ETB
data, and then resumes PMU. However, this idea barely works in practice. Actu-
ally, on occurrence of an interrupt, the handling starts with a general interface
tzic handle irq. This function retrieves the interrupt number, identifies the
handler registered by users, and finally invokes that handler. After the user
handler returns, tzic handle irq will check for further interrupts and handle
them. Oftentimes, when we handle our PMU interrupts, new interrupts would
come. If we resume PMU inside our handler, PMU would count the opera-
tions of tzic handle irq handling the newly arrived interrupts. Following the
tzic handle irq handling process, it would trigger another PMU interrupt han-
dler, eventually resulting in endless interrupt handling loop.

To address the above problem, we hook the tzic handle irq function with
hart handle irq. and right before it exits to the target module, we resume
PMU. When our PMU interrupts come, the handler hart pmu handler regis-
tered by us will back up the ETB data. In this way, we prevent the above
endless interrupt handling loop while obtaining continuous and selective ETM
trace.

Elastic Decoding With the help of PMU, HART can timely interrupt the
target module and back up the ETB data. To reduce time cost of backup, in the



8 Y. Du et al.

Valid Trace Stale TraceStale Trace

rd_off wr_off

rd_rnd/wr_rnd + 1
Trace Growing Direction

Fig. 5: Parallel trace data saving and decoding.

interrupt handler, HART simply copies the ETB data to the previously allo-
cated hart buf. Meanwhile, HART maintains wr off and wr rnd, respectively
indicating the writing position to hart buf and how many rounds HART has
filled up this buffer. To decode the trace efficiently, HART spawns a decoding
thread for each target module. This thread monitors and keeps decoding the
remaining trace data, where rd off and rd rnd indicate the current parsing po-
sition and how many rounds it has read through the entire buffer. This design
of parallel trace backup and decoding, as shown in Figure 5, however, involves
two issues. We describe the details and explain how we address them as follows.

Table 5: Algorithm for backing up ETB data inside PMU interrupt handler and
the parallel decoding thread for parsing trace with an elastic scheduling scheme.

1 void retrieve_trace_data(){
2 /*get trace size*/
3 trace_sz = bytes_in_etb();
4 /*copy trace*/
5 cpy_trace(trace_buf, etb, trace_sz);
6 /*update write offset and rounds*/
7 wr_off += trace_sz;
8 if(wr_off >= trace_buf_sz){
9 wr_off %= trace_buf_sz;
10 wr_rnd ++;
11 }
12 /*overwrite is possible,
13 pause the target module*/
14 if(wr_rnd > rd_rnd &&
15 rd_off - wr_off < 4KB)
16 SIGSTP(target_pid);
17 }

(a) ETB data backup.

1 void parse_trace(){
2 while(true){
3 /*calculate valid trace size*/
4 if(rd_rnd == wr_rnd) trace_sz =
5 wr_off - rd_off;
6 else trace_sz = trace_buf_sz -
7 rd_off + wr_off;
8 /*decode trace*/
9 decode(trace_buf, rd_off, trace_sz);
10 /*update rd_off and rd_rnd*/
11 rd_off = wr_off;
12 if(rd_rnd < wr_rnd)
13 rd_rnd ++;
14 if(target_paused(target_pid))
15 SIGCONT(target_pid)
16 /*yield CPU based on the
17 workload of decoding*/
18 msleep(100 - CONS *
19 trace_sz/trace_buf_sz);
20 yield();
21 }
22 }

(b) Parallel decoding thread.

First, an over-writing problem is likely to happen when the backup function
runs beyond the decoder by more than one lap, leading to the error of losing valid
data. A similar over-reading error comes due to a similar lack of synchronization.
In order to maintain the correctness of the concurrency, we design algorithms for
both the backup function and the decoder with checks of over-writing/reading
possibilities. On the one hand, as the backup algorithm in Table 5a presents,
if wr rnd is larger than rd rnd while rd off is less than 4KB ahead of wr off,
a new operation of backing up 4KB data will potentially overwrite the previous
unprocessed trace. In case of this, HART will pause the task that is using the
target module, and restart via the decoder later when it is safe to continue. On
the other hand, as the decoding algorithm in Table 5b depicts, if the decoder



HART: Hardware-assisted Kernel Module Tracing on Arm 9

and the backup function arrive at the same location, the decoding thread will
pause and yield the CPU due to no trace left to parse.

Second, since the generation of trace is oftentimes slow, a persistent query for
any new trace will bring CPU with a waste of cycles. Such frequent occupation
of CPU has a negative impact on other normal works, incurring heavy overhead
in the performance and efficiency especially for the system equipped with fewer
CPU cores. Thus, we introduce an elastic scheduling scheme to the decoding
thread as a remedy for the waste, shown in Table 5b. During a round of checking
and decoding new trace, we calculate the size of the valid trace to represent the
generation rate of the trace. Then, the sleep time for the decoding thread is set
to inversely proportional to the computed growth rate. That is, the slower the
trace grows, the longer the thread sleeps, and vice versa. In this way, HART
leaves more resources for CPU while the decoding thread is not busy, but also
assures the decoder of high efficiency when it owns a heavy workload.

Supports of Concurrency We consider two types of concurrency, and support
both conditions. First, multiple modules might be registered for protection under
HART at the same time. In our design, the context of each module is maintained
separately, and HART switches the context at module switch time. The enter
and exit events of a kernel module are captured by HART, and context of ETM
tracing and PMU counting related to the module is saved at exiting and restored
at reentering. Since traces pertaining to different modules are distinguishable
based on the context-ID 7 packets, our design reuses the same hart buf for
different modules for the sake of memory efficiency.

Second, multiple user space clients may access the module(s) concurrently,
which is common on multi-core SoCs. To handle this type of concurrency, we
allocate multiple hart buf on a device with many cores, with each of hart buf

uniquely serving one CPU core. This prevents race on trace storage among CPU
cores. As both ETM and PMU are core-specific, their configurations and uses
are independent across different cores. It is also worth noting that the ETB is
shared by the cores. This does not interrupt our system. First, ETM traces from
different cores are sequentially pushed to ETB, avoiding race on trace saving.
Second, ETM attaches a context-ID whenever a task is being traced. This enables
the decoder to separate the trace for individual tasks. Finally, we signal to pause
the target module(s) on other cores while one core is doing ETB backup, so as
to avoid losing trace data. Other than the trace buffer, we assign a separated
decoding thread for each module to prevent confusion in the decoding process.

Open Interfaces To facilitate the further establishment of various trace-based
security applications, we provide users of HART with a comprehensive set of
interfaces, including (1)Initialization and Exiting interfaces to help users
register to the initialization and exiting process of HART, (2)Decoding inter-
faces to pass the parsed ETM trace data to users, and (3)Instrumentation
interfaces to help hook external functions as shown in line 6 and 10 in Table 4.

7 The context-ID of a task is identical to the process ID. With the context-ID, the
processor and ETM can identify which task triggers the execution of the module.



10 Y. Du et al.

3.2 HART Implementation

We implement the prototype of HART on Linux system with kernel 4.4.145-
armv7-x16, running on a Freescale i.MX53 Quick Start Board [14] with ARMv7
Cortex-A8 processor [20]. As the processor only supports 32-bit mode, HART
so far only runs with 32-bit systems. We believe there is no significant difference
between the 32-bit and 64-bit implementations, and the only differences might lie
in the driver for the involved hardware (e.g., PMU, ETM, and ETB) and some
configurations (e.g., the instruction threshold for the trace buffer). In total, the
HART system contains about 3,200 lines of C code.

To decode the trace data, we reuse an open-source decoder [57], which sup-
ports both ETM-V2 and ETM-V3. We optimize the decoding process by directly
indexing the packet handler with the packet type. Thus HART avoids the cost
of handler looking up and will achieve better efficiency.

After loading HART into the kernel as a standalone driver, we need to cus-
tomize the native module utilities, insmod and rmmod, to inform HART of the
installation and the removal of the target module to be protected. Before in-
stalling the module, our insmod will send the notice to the virtual device reg-
istered by HART, which actually reminds HART of standby for the module
protection. Our rmmod is customized similarly.

4 HASAN Design and Implementation

We also build an AddressSanitizer HASAN with HART’s open interfaces to
demonstrate the extended utilization of HART. The design of HASAN reuses
the scheme of AddressSanitizer [50] and follows the implementation of the Kernel
Address Sanitizer (KASAN) [15]. Instead of sanitizing the whole kernel, HASAN
focuses on specific kernel modules. Without source code, we cannot locate local
and global arrays, which prevents us from wrapping those objects with redzones.
Thus, HASAN only focuses on memory objects on the heap. Note that if the
module source code is available, HASAN can achieve the same level protection
with KASAN. However, if the module source code is out of reach, HASAN can
still achieve heap protection while KASAN will not work at all.

Table 6: Memory management interfaces HASAN hooked.

Category Allocation De-allocation
Kmem cache kmem cache alloc kmem cache create kmem cache free kmem cache destroy

Kmalloc kmalloc krealloc kzalloc kcalloc kfree

Page operations alloc pages get free pages free pages free pages

Design and Implementation: As HASAN aims to protect kernel memory, it
only allocates shadow memory for the kernel space. As the kernel space ranges
from 0xbf000000 to 0xffffffff in our current system, HASAN allocates a
130MB continuous virtual space for the shadow memory with each shadow
memory bit mapping to a byte. Given an address addr, HASAN maps it to
the shadow memory location using the following function, where ADDR OF SHM

indicates the beginning of our virtual space.



HART: Hardware-assisted Kernel Module Tracing on Arm 11

1 void * addr_to_hasanaddr(addr){
2 return ((u32)addr >> 3) +
3 (addr - 0xbf000000) + ADDR_OF_SHM);
4 }

To wrap heap objects with redzones, HASAN hooks the slab interfaces for
memory management 8. As aforementioned, we achieve the hooking through the
interfaces that HART plants to the wrappers of external calls. The interfaces
that HASAN currently supports are listed in three categories in Table 6, with
their handling methods explained as follows.

¬ When kmem cache create is invoked to creates a memory cache with size
bytes, we first enlarge this size so as to reserve space for redzones around the
actual object. After kmem cache alloc has allocated the object, we mark the rest
space as redzones. If kmem cache alloc requires memory from caches created by
other kernel components (in many cases it will happen), HASAN will redirect
the allocation to caches that are pre-configured in HASAN. These pre-configured
caches will be destroyed when the target module is removed.

­ In the second category, we first align the requested size by 8 bytes and
then add another 16 bytes reserving for redzones. Then we call stock kmalloc

and return to users with the address of the 9th byte in the allocated buffer. The
first 8 bytes together with the remaining space at the end will be poisoned.

De-allocations in both categories above follow similar strategies to KASAN.
HASAN delays such operations (e.g., kfree) and marks the freed regions as
poisoned. These memories will be released until the size of delayed memory
reaches a threshold or the module is unloaded.

®In the third category, however, we only delay the corresponding de-allocation.
For allocation, increasing the allocated size in those interfaces incurs a tremen-
dous cost, as the size in their request indicates the order of pages to be allocated.

Table 7: Utility kernel functions for memory operations.

Category Function Name Category Function Name
memory memcpy memccpy memmove memset print sprintf vsprintf

string strcpy strncpy strcat strncat strdup kernel copy from user copy to user

Since our design excludes the main kernel for tracing, it may miss to cap-
ture some vulnerable memory operations inside the kernel functions that listed
in Table 7. To handle this issue, we make copies of those functions and load
them as a new code section in HASAN. When a target module invokes those
functions, we redirect the execution to our copies, enable ETM to trace on them
and integrate this trace into ETB. To avoid switching hardware configurations
on entering and leaving those functions, our implementation adds the memory
holding our copies as an additional range to trace.

The detection of HASAN is straightforward and efficient. We register a call
back to HART’s decoder. On the arrival of a normal data packet, the decoder
will parse the memory address for HASAN. Then, HASAN maps the address

8 We are yet to add supports for slub.



12 Y. Du et al.

to the shadow memory and checks the poison in it. To avoid unsynchronized
cases such as decoding of valid accesses after memory de-allocation, we ensure
that the decoding synchronizes with the execution in each interface as presented
in Table 6.
Fine-grained Synchronization: As our decoding proceeds after the execu-
tion, there is a delay from the occurrence of memory corruption to the detection
of violations, which may be exploited to bypass HASAN. To reduce this at-
tack surface, we force the decoder to synchronize with the execution whenever
a callback is invoked. Specifically, our wrapper of that callback will pause the
execution until the decoder consumes all the trace. Since a system call reach-
ing the target module will invoke at least one callback, we ensure one or more
synchronization(s) between successive system calls. This follows the existing re-
search [21] that relies on system-call level synchronization to ensure security.
Another rationale is that, even the state-of-art kernel exploits would require
multiple system calls to compromise the execution [62,63].

5 Evaluation

In this section, to demonstrate the utility of our work, we sequentially test
whether our work can achieve continuous tracing and measure their efficiency
and effectiveness.

5.1 Setup

To understand the correctness and efficiency of our work, we run 6 widely-used
kernel modules and come with standard benchmarks, detailing in Table 8. To
further understand the non-intrusiveness in our work, we run the lmbench bench-
marks. The evaluation is conducted on the aforementioned Freescale i.MX53
Quick Start Board [14] with 1 GB of RAM. As we aim to demonstrate the
generality of HART with the minimal hardware requirements of the trace func-
tionality of ETM and a small ETB, we consider i.MX53 QSB a perfect match.
We do not measure the two types of concurrency described in Section 3.1, be-
cause the device has only one core, so concurrent tests would produce same
results as running the tests sequentially. For comparison, we also test under the
state-of-art solution KASAN [6]. Since the i.MX53 board we use can only support
32-bit systems while KASAN is only available on 64-bit systems, we run the KASAN
based experiments in a Raspberry Pi 3+ configured with the same computing
power and memory.

To verify the effectiveness of detecting memory corruption, we collect 6
known memory vulnerabilities which cover different types and lie in different
modules with various categories and complexities. Note we only cover heap-
related buffer overflows because HASAN focuses on heap related memory errors.

5.2 Continuous Tracing

In Table 9, we summarize the frequency of HART backing up the data from the
ETB, the size of data retrieved each time. Most importantly, the last column
in Table 9 shows ETB has never been filled up. Besides, the maximal size of
trace is uniformly less than 2K, not even reaching the middle of ETB. Both



HART: Hardware-assisted Kernel Module Tracing on Arm 13

Table 8: Performance evaluation. The results are normalized using the tests on
Native img + Native module as baseline 1. A larger number indicates a larger
data transmission rate and a lower decelaration on performance.

Module Benchmark Result

Type Name Name Setting
Native img + KASAN img +

HART HASAN Native KASAN
module module module module

Network
HSTCP [30] iperf [29] Local Comm. 1.00 1.00 0.29 0.28
TCPW [2] iperf [29] Local Comm. 0.92 0.91 0.28 0.28
H-TCP [12] iperf [29] Local Comm. 0.94 0.94 0.26 0.25

File System

HFS+ [13] IOZONE [28]

Wr/fs=4048K/reclen=64 1.00 1.00 0.96 0.95
Wr/fs=4048K/reclen=512 0.88 0.87 0.96 0.94
Rd/fs=4048K/reclen=64 0.92 0.89 0.98 0.92
Rd/fs=4048K/reclen=512 0.90 0.89 0.99 0.99

UDF [19] IOZONE [28]

Wr/fs=4048K/reclen=64 0.95 0.93 0.99 0.97
Wr/fs=4048K/reclen=512 0.97 0.97 1.00 0.92
Rd/fs=4048K/reclen=64 0.98 0.97 0.99 0.98
Rd/fs=4048K/reclen=512 0.97 0.96 1.00 0.98

Driver USB STORAGE[8] dd [45]

Wr/bs=1M/count=1024 1.00 1.00 1.00 0.43
Wr/bs=4M/count=256 1.00 1.00 0.99 0.43
Rd/bs=1M/count=1024 0.99 0.99 0.99 0.75
Rd/bs=4M/count=256 1.00 1.00 1.00 0.76

Avg. - - - 0.95 0.94 0.85 0.72

Table 9: Tracing evaluation of HART and HASAN.

Module Retrieving times Max size(Byte) Min size(Byte) Average size(Byte) Full ETB

Type Name HART HASAN HART HASAN HART HASAN HART HASAN HART HASAN

Network
HSTCP 4243 3964 1100 1196 20 20 988 1056 0 0
TCP-W 3728 3584 1460 1456 20 20 1128 1088 0 0
H-TCP 3577 3595 1292 1304 20 20 1176 1168 0 0

File HFS+ 30505 30278 1652 1756 20 20 144 148 0 0
System UDF 17360 20899 2424 2848 20 20 240 232 0 0

Driver
USB
STORAGE

9316 9325 1544 1692 20 20 448 448 0 0

facts indicate that overflow in ETB never happened and all the trace data has
been successfully backed-up and decoded. Thus, HART and HASAN achieve
continuous tracing, which is the precondition for the correctness of the solution.

We also observe that HART and HASAN have some similarities and dif-
ferences in their tracing behaviours. Overall, HART and HASAN present the
similar but non-identical results in the same set of module. The slight devia-
tion mainly derives from the padding packets randomly inserted by ETM and
the random skids of PMU. The differences lie across different families of mod-
ules. HART and HASAN back up ETB more frequently in the two file systems
(nearly 2X more than that in the driver module and 3-7X more than the net-
work modules), while they produce the least trace in each ETB backup with
the file systems. This indicates that file systems execute more instructions yet
they usually carry less information about control flow and data accesses. Due
to such increase in instruction number, PMU has to raise more interrupts in
the testing on file systems and contributes to the more frequent ETB backups.
The statistics above are consistent with the following performance evaluation
– a higher frequency of backing up incurs more trace management and thus,
introduces higher performance overhead.

5.3 Performance Evaluation

For performance measurement, we record (1) the bandwidths of the server for
network modules and (2) the read/write rates for file-systems as well as driver
modules. The testing results are summarized in Table 8. Across all three types of



14 Y. Du et al.

Table 10: Performance evaluation on KASAN with lmbench. HART and
HASAN introduce no overhead to the main kernel, so the results are omitted
here.

Func. Setting Native KASAN Overhead Func. Setting Native KASAN Overhead

stat 3.08 16.4 5.3 0K File Create 44.0 136.1 3.1
Processes open clos 8.33 36.7 4.4 0K File Delete 35.2 227.1 6.5

(ms) sig hndl 6.06 20.4 3.4 File & VM 10K File Create 99.9 370.2 3.7
fork proc 472 1940 4.1 system 10K File Delete 64.2 204.7 3.2

Local Pipe 18.9 45.8 2.4 latency Mmap Latency 188000 385000 2.0
Comm. AF UNIX 26.6 97.9 3.7 (ms) Prot Fault 0.5 0.5 1.0
latency UDP 41.4 127.6 3.1 Page Fault 1.5 2.3 1.5
(ms) TCP 53.4 176.4 3.3 100fd selct 6.6 13.7 2.1

drivers, HART and HASAN barely affects the performance. On average, HART
introduces an overhead of 5%, while HASAN introduces 6%. In the worst-case
scenario, HART brings a maximum of 12% for (reclen=64) when testing on
HFS+, and HASAN brings at most 13% in the same case. These results well
support that HART and HASAN are in general efficient. The most important
reason for this efficiency, we believe, is caused by employing ETM to capture
control flow and data flow with high efficiency. In general, the hardware-based
tracing involves negligible performance overhead, and almost all the overhead
introduced by HART is caused by decoding and analyzing the trace output.

On contrast, since KASAN cannot be deployed to the modules without KASAN-
enabled kernel, we analyze the impacts of only enforcing KASAN through the
differences between the tests with and without KASAN-enabled modules to some
extent: ¬The test performed on the network modules indicates KASAN introduces
nearly 4X slowdown. The reason is that, during a networking event (receiving
and sending a message), the kernel performs large amounts of computations due
to the complicated operations on the network stack, even though the IO through
the network port is cheap as we are only doing local communication. As such, the
overhead introduced by KASAN is not diluted by IO accesses. Furthermore, though
the difference between two tests on KASAN is insignificant, it does not imply that
KASAN will be efficient if we re-engineer it to protect the target module only. In
a network activity, those drivers only take up a small fraction of computation in
the kernel space. Overhead on such computation is covered up by the significant
slowdown in the main kernel. ­ In the two file systems, KASAN hardly affects the
performance of the kernel or the target module. Again, this does not necessarily
imply that KASAN is most efficient, because in a file system operation, most of the
time is spent on disk access and the computation in the kernel is quite simple
and quick. Therefore, the average overhead is insignificant. ® In the test on
USB STORAGE driver, most of the computation in the kernel space is performed
by the target module, and takes more time than the IO access. Thus, the cost
of adding KASAN on the module is significant (about 2X).

Besides reducing the overhead on the target module, we also verify our point
of the non-intrusiveness of HART and HASAN. Running them without the
target module, we find they introduce zero overhead to the main kernel, be-
cause they notice nothing to protect and are always sleeping. Differing from our
works, KASAN places a significant burden on the main kernel (Table 10). This



HART: Hardware-assisted Kernel Module Tracing on Arm 15

Table 11: Effectiveness evaluation on HASAN. For the result of Detection, “Y”
means detected.

Vulnerability Detection
CVE-ID Type PoC HASAN KASAN
CVE-2016-0728 Use-after-free REFCOUNT overflow [56] Y Y
CVE-2016-6187 Out-of-bound Heap off-by-one [42] Y Y
CVE-2017-7184 Out-of-bound xfrm replay verify len [52] Y Y
CVE-2017-8824 Use-after-free dccp disconnect [33] Y Y
CVE-2017-2636 Double-free n hdlc [44] Y Y
CVE-2018-12929 Use-after-free ntfs read locked inode [46] Y Y

well supports the advantage of our works in terms of modification to the main
kernel.

5.4 Effectiveness Evaluation

We present the results of our effectiveness evaluation in Table 11. As shown in
this table, both HASAN and KASAN can detect all 6 cases. Since the selected
cases cover different types of heap-related issues, including buffer overflow, off-
by-one, use-after-free, and double free, we demonstrate that HASAN can cover
a variety of vulnerabilities with a comparable security performance to the state-
of-the-art solution in terms of the heap.

6 Discussion

Support of Other Architectures. As hardware tracing brings a significant
improvement in the performance overhead during the debugging, it becomes a
common feature in major architectures. While HART achieves tracing efficiency
with the support of ETM on Arm platforms, we can easily extend our design
to other architectures with such feature. For example, since Processor Tracing
(PT) [3], supports instruction tracing and will be enhanced with PTWRITE [1]
to support efficient data tracing, we can extend our design by replacing the
hardware set-up and configuration (given a target instrumented with PTWRITE).
Support of Statically Linked Modules. HART mainly targets LKM, be-
cause most of the third-party modules are released as LKM for the ease of use.
Our current design cannot work with statically linked modules, mainly because
we require to hook the callbacks and calls to kernel functions, which can be
achieved by adjusting the relocation. However, statically linked modules are
compiled and built as port of the main kernel and hence, we have no access to
place the hooks. To extend support for statically linked modules, we need the
kernel builder to instrument the target modules and place the required hooks.
Breakage of perf tools. As perf tools have already included ETM tracing
capabilities, enabling tracing functionality from the user-space, HART may lead
to the breakage of perf tools. We think the breakage depends on the scenario. If
HART and perf are tracing/profiling different tasks, we consider perf won’t be
affected since HART will save the context of the hardware at the entry and exit



16 Y. Du et al.

of the traced module. However, if HART and perf are tracing/profiling the same
task, perf might be affected. One easy solution is to run HART and perf side by
side instead of running them concurrently.

7 Related Work

7.1 Kernel Protection

Kernel Debugger. Kmemcheck [11] can dynamically check uninitialized mem-
ory usage in x86 kernel space, but its single-stepping debugging feature drags
down the speed of program execution to a large extent. KASAN [6] is the kernel
version of address sanitizer. However, the heavy overhead makes it impossible to
be a real-time protection mechanism, while the low overhead of HASAN show
us the potential. Furthermore, KASAN requires the source code for implemen-
tation. If a vulnerability is hidden in a close-source third-party kernel module,
which is common, HASAN has the potential to detect it but KASAN would not.
Ftrace [10] is an software-based tracer for the kernel. Comparing with Ftrace,
HART is noninvasive since we neither modifies the target kernel module nor
requires the source code of the kernel module. In regard to the trace granularity,
Ftrace is used to monitor function calls and kernel events with predefined trace-
points, but HART can be used to trace executed instructions and data used in
these instructions. Ftrace also introduces heavy performance overhead on some
event tracing, and cannot be adopted as a real-time protection as well.
Kernel Integrity Protection. KCoFI [26] enforces the CFI policy by pro-
viding a complete implementation for event handling based on Secure Virtual
Architecture (SVA) [27]. However, all software including OS should be compiled
to the virtual instruction set that SVA provides. The solution also incurs high
computation overhead. With slight modification to the modern architectures,
Song et al. [53] enforces DFI over both of control and non-control data that can
affect security checks. Despite the aids from the re-modelled hardware, the DFI
still introduces significant latency to various system calls.
Isolation and Introspection. BGI [22] enforces isolation through an additional
interposition layer between kernel and the target module. However, it requires
instrumentation over source code of the target modules. Similar ideas are fol-
lowed by many other works [48,58,65]. Ninja [43] is a transparent debugging and
tracing framework on Arm platform, and it can also be used to introspect the
OS kernel from TrustZone. However, bridging the semantic gaps between Linux
kernel and TrustZone would increase the performance overhead significantly.

7.2 Hardware Feature Assisted Security Solutions

Hardware performance counters. HDROP [66] and SIGDROP [59] leverage
PMU to count for the abnormal increase of events and seek patterns of ROP at
runtime. Morpheus [38] proposes a benchmarking tool to evaluate computational
signatures based mobile malware detection, in which HPCs help to create run-
time traces from applications for the ease of the signature comparison. Although



HART: Hardware-assisted Kernel Module Tracing on Arm 17

these solutions [37,55] achieve significant overhead reduction with the assistance
of HPCs, none of them applies this hardware feature to kernel module protection.
Hardware-based tracing. With the availability of Program Trace Interface,
Kargos [41] monitors the execution and memory access events to detect code in-
jection attacks. However, it brings extra performance overhead due to the modi-
fication to the kernel. Since the introduction in Intel’s Broadwell microarchitec-
ture, PT has been broadly applied in solutions for software security [32,34,35,47].
All the PT-based solutions are control flow specific, differing from HART that
traces both data flow and control flow for security protection.

8 Conclusion

Kernel modules demand as much security protection as the main kernel. How-
ever, the current solutions are actually limited by the requirement of source
code, significant intrusiveness and heavy overhead. We present HART as a gen-
eral ETM-powered tracing framework specifically for kernel modules, with the
most preliminary hardware support and the most compatible method. HART
can trace the selective work on the binary-only module(s) continuously by com-
bining hardware configurations and software hooks, and decode the trace effi-
ciently following an elastic scheduling. Based on the framework, we then build
a modular security solution, HASAN, to effectively detect memory corruptions
without the aforementioned limitations. Testing on a set of benchmarks in dif-
ferent modules, both HART and HASAN perform significantly superior to the
state-of-the-art KASAN, introducing the average overhead of 5% and 6%. More-
over, HASAN identifies all of the 6 vulnerabilities in different categories and
modules, indicating its comparable effectiveness to the state-of-the-art solutions.

Acknowledgements. We sincerely thank our shepherd Prof. Dave Jing Tian
and reviewers for their comments and feedback.This work was supported in
part by grants from the Chinese National Natural Science Foundation(NSFC
61272078, NSFC 61073027).

References

1. Ptwrite - write data to a processor trace packet. https://hjlebbink.github.i

o/x86doc/html/PTWRITE.html

2. Tcp westwood+ congestion control. https://tools.ietf.org/html/rfc3649

(2003)
3. Processor tracing. https://software.intel.com/en-us/blogs/2013/09/18/pr

ocessor-tracing (2013)
4. Juno ARM Development Platform SoC Technical Reference Manual (2014)
5. slub. https://www.kernel.org/doc/Documentation/vm/slub.txt (2017)
6. Home google/kasan wiki. https://github.com/google/kasan/wiki (2018)
7. Apple a4. https://www.apple.com/newsroom/2010/06/07Apple-Presents-iPho

ne-4/ (2019)

https://hjlebbink.github.io/x86doc/html/PTWRITE.html
https://hjlebbink.github.io/x86doc/html/PTWRITE.html
https://tools.ietf.org/html/rfc3649
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://github.com/google/kasan/wiki
https://www.apple.com/newsroom/2010/06/07Apple-Presents-iPhone-4/
https://www.apple.com/newsroom/2010/06/07Apple-Presents-iPhone-4/


18 Y. Du et al.

8. Config usb storage: Usb mass storage suppor. https://cateee.net/lkddb/web

-lkddb/USB STORAGE.html (2019)
9. Embedded trace macrocell architecture specification. http://infocenter.arm.c

om/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html (2019)
10. ftrace - function tracer. https://www.kernel.org/doc/Documentation/trace/f

trace.txt (2019)
11. Getting started with kmemcheck – the linux kernel documentation. https://ww

w.kernel.org/doc/html/v4.14/dev-tools/kmemcheck.html (2019)
12. H-tcp - congestion control for high delay-bandwidth product networks. http:

//www.hamilton.ie/net/htcp.htm (2019)
13. Hfs plus. https://www.forensicswiki.org/wiki/HFS%2B (2019)
14. i.mx53 quick start board — nxp. https://www.nxp.com/products/power-manag

ement/pmics/power-management-for-i.mx-application-processors/i.mx53-

quick-start-board:IMX53QSB (2019)
15. The kernel address sanitizer (kasan) - the linux kernel documentation. https:

//www.kernel.org/doc/html/v4.14/dev-tools/kasan.html (2019)
16. Kmemleak. https://www.kernel.org/doc/html/v4.14/dev-tools/kmemleak.h

tml (2019)
17. Samsung exynos 3110. https://www.samsung.com/semiconductor/minisite/e

xynos/products/mobileprocessor/exynos-3-single-3110/ (2019)
18. Snapdragon 200 series. https://www.qualcomm.com/snapdragon/processors/2

00 (2019)
19. Universal disk format. https://docs.oracle.com/cd/E19683-01/806-4073/fs

overview-8/index.html (2019)
20. ARM: Cortex-A8 Technical Reference Manual (2014)
21. Bigelow, D., Hobson, T., Rudd, R., Streilein, W., Okhravi, H.: Timely rerandomiza-

tion for mitigating memory disclosures. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. pp. 268–279. ACM (2015)

22. Boyd-Wickizer, S., Zeldovich, N.: Tolerating malicious device drivers in linux. In:
USENIX Annual Technical Conference. Boston (2010)

23. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping kernel
objects to enable systematic integrity checking. In: Proceedings of the 16th ACM
conference on Computer and communications security. pp. 555–565. ACM (2009)

24. Castro, M., Costa, M., Martin, J.P., Peinado, M., Akritidis, P., Donnelly, A.,
Barham, P., Black, R.: Fast byte-granularity software fault isolation. In: Proceed-
ings of the ACM SIGOPS 22nd symposium on Operating systems principles. pp.
45–58. ACM (2009)

25. Chen, H., Mao, Y., Wang, X., Zhou, D., Zeldovich, N., Kaashoek, M.F.: Linux
kernel vulnerabilities: State-of-the-art defenses and open problems. In: Proceedings
of the Second Asia-Pacific Workshop on Systems. p. 5. ACM (2011)

26. Criswell, J., Dautenhahn, N., Adve, V.: Kcofi: Complete control-flow integrity for
commodity operating system kernels. In: Security and Privacy (SP), 2014 IEEE
Symposium on. pp. 292–307. IEEE (2014)

27. Criswell, J., Lenharth, A., Dhurjati, D., Adve, V.: Secure virtual architecture: A
safe execution environment for commodity operating systems. In: Proceedings of
21st ACM SIGOPS Symposium on Operating Systems Principles. pp. 351–366.
SOSP ’07, ACM (2007)

28. Don, C., Capps, C., Sawyer, D., Lohr, J., Dowding, G., etc.: Iozone filesystem
benchmark. http://www.iozone.org/ (2016)

29. Dugan, J., Elliott, S., Mah, B.A., Poskanzer, J., Prabhu, K., etc.: iperf - the ulti-
mate speed test tool for tcp, udp and sctp. https://iperf.fr/ (2018)

https://cateee.net/lkddb/web-lkddb/USB_STORAGE.html
https://cateee.net/lkddb/web-lkddb/USB_STORAGE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/html/v4.14/dev-tools/kmemcheck.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kmemcheck.html
http://www.hamilton.ie/net/htcp.htm
http://www.hamilton.ie/net/htcp.htm
https://www.forensicswiki.org/wiki/HFS%2B
https://www.nxp.com/products/power-management/pmics/power-management-for-i.mx-application-processors/i.mx53-quick-start-board:IMX53QSB
https://www.nxp.com/products/power-management/pmics/power-management-for-i.mx-application-processors/i.mx53-quick-start-board:IMX53QSB
https://www.nxp.com/products/power-management/pmics/power-management-for-i.mx-application-processors/i.mx53-quick-start-board:IMX53QSB
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kmemleak.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kmemleak.html
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-3-single-3110/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-3-single-3110/
https://www.qualcomm.com/snapdragon/processors/200
https://www.qualcomm.com/snapdragon/processors/200
https://docs.oracle.com/cd/E19683-01/806-4073/fsoverview-8/index.html
https://docs.oracle.com/cd/E19683-01/806-4073/fsoverview-8/index.html
http://www.iozone.org/
https://iperf.fr/


HART: Hardware-assisted Kernel Module Tracing on Arm 19

30. Floyd, S.: Highspeed tcp for large congestion windows. https://tools.ietf.org

/html/rfc3649 (2003)
31. Garfinkel, T., Rosenblum, M., et al.: A virtual machine introspection based archi-

tecture for intrusion detection. In: Proceedings of The Network and Distributed
System Security Symposium. pp. 191–206. NDSS’03 (2003)

32. Ge, X., Cui, W., Jaeger, T.: GRIFFIN: Guarding Control Flows Using Intel Proces-
sor Trace. Proceedings of the 22nd ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (2017)

33. Ghannam, M.: Cve-2017-8824 linux: use-after-free in dccp code. https://www.op

enwall.com/lists/oss-security/2017/12/05/1 (2017)
34. Gu, Y., Zhao, Q., Zhang, Y., Lin, Z.: PT-CFI: Transparent Backward-Edge Con-

trol Flow Violation Detection Using Intel Processor Trace. Proceedings of the 7th
ACM International Conference on Data and Application Security and Privacy (CO-
DASPY) (2017)

35. Hertz, J., Newsham, T.: Project triforce: Run afl on everything!
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/20

16/june/project-triforce-run-afl-on-everything/ (2016)
36. Hinum, K.: Hisilicon kirin 920. https://www.notebookcheck.net/HiSilicon-Ki

rin-920-SoC-Benchmarks-and-Specs.240088.0.html (2017)
37. Iyer, R.K.: An os-level framework for providing application-aware reliability. In:

Dependable Computing, 2006. PRDC ’06. 12th Pacific Rim International Sympo-
sium on (2007)

38. Kazdagli, M., Ling, H., Reddi, V., Tiwari, M.: Morpheus:benchmarking computa-
tional diversity in mobile malware. In: Proceedings of Hardware and Architectural
Support for Security and Privacy (2014)

39. Linares-Vásquez, M., Bavota, G., Escobar-Velásquez, C.: An empirical study on
android-related vulnerabilities. In: Mining Software Repositories (MSR), 2017
IEEE/ACM 14th International Conference on. pp. 2–13. IEEE (2017)

40. Machiry, A., Spensky, C., Corina, J., Stephens, N., Kruegel, C., Vigna, G.: Dr.
checker: A soundy analysis for linux kernel drivers. In: 26th USENIX Security
Symposium (USENIX Security 17). pp. 1007–1024. USENIX Association (2017)

41. Moon, H., Lee, J., Hwang, D., Jung, S., Seo, J., Paek, Y.: Architectural supports
to protect os kernels from code-injection attacks. In: Proceedings of Hardware and
Architectural Support for Security and Privacy (2016)

42. Nikolenko, V.: Heap off-by-one poc. http://cyseclabs.com/exploits/matresh

ka.c (2016)
43. Ning, Z., Zhang, F.: Ninja: Towards transparent tracing and debugging on arm.

In: 26th USENIX Security Symposium (USENIX Security 17). pp. 33–49 (2017)
44. Popov, A.: Cve-2017-2636: exploit the race condition in the n hdlc linux kernel

driver bypassing smep. https://a13xp0p0v.github.io/2017/03/24/CVE-2017-

2636.html (2017)
45. Rubin, P., MacKenzie, D., Kemp, S.: dd - convert and copy a file. http://man7

.org/linux/man-pages/man1/dd.1.html (2019)
46. Schumilo, S.: Multiple memory corruption issues in ntfs.ko (linux 4.15.0-15.16).

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1763403 (2018)
47. Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S., Holz, T.: kAFL: Hardware-

Assisted Feedback Fuzzing for OS Kernels. Proceedings of the 26th Security Sym-
posium (USENIX Security) (2017)

48. Sehr, D., Muth, R., Biffle, C., Khimenko, V., Pasko, E., Schimpf, K., Yee, B., Chen,
B.: Adapting software fault isolation to contemporary cpu architectures. In: 19th
USENIX Security Symposium (USENIX Security 10). pp. 1–12 (2010)

https://tools.ietf.org/html/rfc3649
https://tools.ietf.org/html/rfc3649
https://www.openwall.com/lists/oss-security/2017/12/05/1
https://www.openwall.com/lists/oss-security/2017/12/05/1
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.notebookcheck.net/HiSilicon-Kirin-920-SoC-Benchmarks-and-Specs.240088.0.html
https://www.notebookcheck.net/HiSilicon-Kirin-920-SoC-Benchmarks-and-Specs.240088.0.html
http://cyseclabs.com/exploits/matreshka.c
http://cyseclabs.com/exploits/matreshka.c
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
http://man7.org/linux/man-pages/man1/dd.1.html
http://man7.org/linux/man-pages/man1/dd.1.html
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1763403
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1763403


20 Y. Du et al.

49. Semiconductor, F.: i.MX53 Multimedia Applications Processor Reference Manual
(2012)

50. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: A fast
address sanity checker. In: USENIX Annual Technical Conference. pp. 309–318
(2012)

51. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: A tiny hypervisor to provide
lifetime kernel code integrity for commodity oses. In: ACM SIGOPS Operating
Systems Review. pp. 335–350. ACM (2007)

52. snorez: Exploit of cve-2017-7184. https://raw.githubusercontent.com/snorez

/exploits/master/cve-2017-7184/exp.c (2017)
53. Song, C., Lee, B., Lu, K., Harris, W., Kim, T., Lee, W.: Enforcing kernel security

invariants with data flow integrity. In: NDSS (2016)
54. Swift, M.M., Martin, S., Levy, H.M., Eggers, S.J.: Nooks: An architecture for

reliable device drivers. In: Proceedings of the 10th workshop on ACM SIGOPS
European workshop. pp. 102–107. ACM (2002)

55. Tang, A., Sethumadhavan, S., Stolfo, S.J.: Unsupervised anomaly-based malware
detection using hardware features. In: Proceedings of International Workshop on
Recent Advances in Intrusion Detection (2014)

56. Team, P.P.: Refcount overflow exploit. https://github.com/SecWiki/linux-ker

nel-exploits/blob/master/2016/CVE-2016-0728/cve-2016-0728.c (2017)
57. virtuoso: virtuoso/etm2human: Arm’s etm v3 decoder. https://github.com/vir

tuoso/etm2human (2009)
58. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault

isolation. In: ACM SIGOPS Operating Systems Review. pp. 203–216. ACM (1994)
59. Wang, X., Backer, J.: Sigdrop: Signature-based rop detection using hardware per-

formance counters. arXiv preprint arXiv:1609.02667 (2016)
60. Wang, Z., Jiang, X.: Hypersafe: A lightweight approach to provide lifetime hyper-

visor control-flow integrity. In: Security and Privacy (SP), 2010 IEEE Symposium
on. pp. 380–395. IEEE (2010)

61. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proceedings of the 16th ACM conference on Computer and
communications security. pp. 545–554. ACM (2009)

62. Wu, W., Chen, Y., Xing, X., Zou, W.: Kepler: Facilitating control-flow hijacking
primitive evaluation for linux kernel vulnerabilities. In: 28th USENIX Security
Symposium (USENIX Security 19). pp. 1187–1204 (2019)

63. Wu, W., Chen, Y., Xu, J., Xing, X., Gong, X., Zou, W.: Fuze: Towards facilitat-
ing exploit generation for kernel use-after-free vulnerabilities. In: 27th USENIX
Security Symposium (USENIX Security 18). pp. 781–797 (2018)

64. Xiong, X., Tian, D., Liu, P., et al.: Practical protection of kernel integrity for
commodity os from untrusted extensions. In: NDSS. vol. 11 (2011)

65. Zhou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R., Harren, M., Necula,
G., Brewer, E.: Safedrive: Safe and recoverable extensions using language-based
techniques. In: Proceedings of the 7th symposium on Operating systems design
and implementation. pp. 45–60. USENIX Association (2006)

66. Zhou, H., Wu, X., Shi, W., Yuan, J., Liang, B.: Hdrop: Detecting rop attacks using
performance monitoring counters. In: Proceedings of International Conference on
Information Security Practice and Experience (2014)

https://raw.githubusercontent.com/snorez/exploits/master/cve-2017-7184/exp.c
https://raw.githubusercontent.com/snorez/exploits/master/cve-2017-7184/exp.c
https://github.com/SecWiki/linux-kernel-exploits/blob/master/2016/CVE-2016-0728/cve-2016-0728.c
https://github.com/SecWiki/linux-kernel-exploits/blob/master/2016/CVE-2016-0728/cve-2016-0728.c
https://github.com/virtuoso/etm2human
https://github.com/virtuoso/etm2human

	HART: Hardware-assisted Kernel Module Tracing on Arm

