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ABSTRACT

Linux-based hypervisors in the cloud server su�er from an in-

creasing number of vulnerabilities in the Linux kernel. To address

these vulnerabilities in a timely manner while avoiding the eco-

nomic loss caused by unplanned shutdowns, live patching schemes

have been developed. Unfortunately, existing live patching solu-

tions have failed to protect patches from post-deployment attacks.

In addition, patches that involve changes to global variables can

lead to practical issues with existing solutions. To address these

problems, we present FortifyPatch, a tamper-resistant live patch-

ing solution for Linux-based hypervisors in cloud environments.

Speci�cally, FortifyPatch employsmultiple Granule Protection Ta-

bles from Arm Con�dential Computing Architecture to protect the

integrity of deployed patches. TrustZone Address Space Controller

and Performance Monitor Unit are used to prevent the bypassing

of the Patch via kernel code protection and timely page table ver-

i�cation. FortifyPatch is also able to patch global variables via

well-designed data access traps. We prototype FortifyPatch and

evaluate it using real-world CVE patches. The result shows that

FortifyPatch is capable of deploying 81.5% of CVE patches. The

performance evaluation indicates that FortifyPatch protects de-

ployed patches with 0.98% and 3.1% overhead on average across

indicative benchmarks and real-world applications, respectively.

CCS CONCEPTS

• Security and privacy→ Systems security.
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1 INTRODUCTION
Nowadays, the security of cloud servers is a signi�cant concern,

particularly since most hypervisors in the cloud are based on the

Linux kernel [20, 59, 72], which has seen an increase in the number

of vulnerabilities in recent years [35, 37, 44, 55, 82]. Although these

vulnerabilities are usually repaired with security patches, applying

these patches to deployed cloud servers is not always simple due to

the economic losses caused by unplanned shutdowns. For example,

IT downtime can cost an average of $5,600 per minute, and business

downtime can cost up to $300,000 per hour [63, 91].

Kernel live patching [15, 33, 41, 60, 74, 91] is a solution designed

for patching the Linux kernel at runtime. However, traditional live

patching solutions [15, 33, 41, 60, 74] mainly rely on the kernel to

accomplish the patching process. However, the kernel might be

compromised due to vulnerabilities, and the kernel code used for

live patching can even be used as a weapon for Advanced Persistent

Threat (APT) [39] attacks [36]. A recent solution [91] aims to �ll the

gap by leveraging Trusted Execution Environments (TEEs) such as

Intel Software Guard eXtension (SGX) and x86 SystemManagement

Mode (SMM) to eliminate trust in the vulnerable kernel. However,

it only focuses on security during the patching process, but fails to

protect the patch afterwards, leaving it vulnerable to exploitation by

advanced attackers. These attackers could exploit the corresponding

vulnerability before the patching process to gain kernel privilege

and then compromise or revert the patch after it is applied [54]. For

example, "Stuxnet" [56] exploits multiple vulnerabilities for remote

code execution and self-spreading. If one of them is live-patched,

the attacker may be able to revert the patch to �nalize the attack.
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Deploying live patches to hypervisors in cloud environments

poses a similar security challenge. While hypervisor protection

mechanisms have been extensively studied [1, 2, 11, 31, 53] to en-

sure code and control-�ow integrity, these protections typically

focus on safeguarding the original kernel code or veri�ed kernel

modules. Moreover, adversariesmight exploit legitimate approaches

for dynamic code generation (e.g. eBPF [24]) or code modi�cation

(e.g. kprobes [40]) to threaten the security of live patches.

Though using a memory access control mechanism enforced by

a higher privilege (e.g., x86 System Management Mode (SMM) [69],

Arm TrustZone Address Space Controller (TZC) [4], RISC-V Physi-

cal Memory Protection (PMP) [25]) o�ers a more robust security

guarantee, these mechanisms often lack �exibility and are not suit-

able for protecting live patches. Typically, such mechanisms divide

the physical memory into a few continuous regions and assign

varying access permissions to each region. However, a single patch

may require multiple contiguous regions. Therefore, the limited re-

gion number supported by these mechanisms may not be su�cient

to meet the requirements of live patching scenarios.

Recently, Arm has introduced Con�dential Compute Architec-

ture (CCA) [5] to protect virtual machines under untrusted hyper-

visors. It o�ers �ne-grained memory access control through the

Granule Protection Table (GPT) [9]. The ability to protect against

privileged attackers and the �exible memory access control make

CCA an excellent choice for patch protection in live patching scenar-

ios. However, the access control mechanism in GPT is speci�cally

designed for secure VMs solutions, where the attacker and victim

are separate and located at di�erent privilege levels. In contrast,

the deployed patch is coupled with the vulnerable hypervisor in

the live patching scenario, introducing additional complexity.

In this paper, we present FortifyPatch, a tamper-resistant live

patching system that aims to prevent post-deployment manipula-

tions of the patcheswith a set of Armhardware features. Speci�cally,

FortifyPatch utilizes the GPT to isolate live patches from the vul-

nerable hypervisor. TZC and Performance Monitor Unit (PMU) are

used to protect the patch from being bypassed. In order to imple-

ment FortifyPatch, we have identi�ed three major technical chal-

lenges. C1: The attacker and the patch are sitting in the same

privilege. Sophisticated attackers can exploit vulnerabilities in the

hypervisor and obtain privileged access at the hypervisor level,

which can be further used to compromise or bypass the applied

patches. Existing techniques cannot fully address this challenge and

we employ a group of hardware features to achieve the protection.

(Detailed in §4.3). C2: Speci�c patches may cause changes in

thememory layout. If a patch [22, 23, 77] alters the size of a global

variable or inserts/deletes a global variable, the addresses of data

following the changed variable would change as well. However,

updating all references to these data would not be practical in real-

world scenarios. To mitigate this issue, FortifyPatch leverages

well-designed traps to achieve a practical deployment (Detailed in

§4.1.2 and §4.3.3).C3: Adopting the security policies introduces

notable performance overhead. Protecting deployed patches in

FortifyPatch requires context switches to swap the GPTs, which

can cause a notable slowdown. To improve the performance, we

design speci�c strategies to decrease the number of switches and

minimize the overhead of each switch (Detailed in §4.5).

We implement a prototype of FortifyPatch on the Arm Fixed

Virtual Platform (FVP) [8] to demonstrate its functionality. The

evaluation shows that FortifyPatch is capable of deploying 81.5%

of recent CVE patches. We also integrate FortifyPatch with Sam-

sung Islet [67] to show its ability to work with industry-level CCA-

enabled hypervisors and secure VMs. While FVP ensures function-

ally accurate results, it is not cycle-accurate. Thus, we implement

another prototype on Raspberry PI 3B+ [61] to evaluate the perfor-

mance overhead. The evaluation with indicative benchmarks and

real-world applications indicates that FortifyPatch introduces

0.98% and 3.1% performance overhead on average to benchmarks

and real-world applications, respectively.

In summary, we make the following contributions:

• We present FortifyPatch, a tamper-resistant live patching

system for hypervisors in the Arm cloud environment. To the

best of our knowledge, FortifyPatch is the �rst live patch-

ing system capable of defending against post-deployment

attacks. The source code of FortifyPatch is available at

https://github.com/HammerSecurity-Lab/FortifyPatch.

• We utilize an improved GPT switching scheme to isolate the

patch from the hypervisor with low-performance impact.

We also employ TZC and PMU to prevent patch bypassing,

improving the security of deployed patches.

• We propose well-designed traps to eliminate the memory lay-

out changes caused by patches involving changes in global

variables, which helps to deploy most patches without prac-

tical issues.

• We implement FortifyPatch and evaluate it with real-world

CVE patches. The results illustrate that FortifyPatch suc-

cessfully deploys 81.5% of CVE patches. Performance evalu-

ated by benchmarks and real-world applications shows that

FortifyPatch protects deployed patches with an average

overhead of less than 3.1%. We also show that FortifyPatch

can work with industry-level CCA-enabled hypervisors and

secure VMs.

2 BACKGROUND

2.1 Live Patching

Live patching allows vulnerabilities to be patched at runtime with-

out a reboot. Existing live patching solutions can be classi�ed into

three categories: instruction-level patching [15, 34, 57], function-

level patching [14, 33, 41, 60, 74, 91], and full replacement [38]. The

instruction-level patching and function-level patching replace the

vulnerable instructions or functions, respectively. Full replacement,

also known as live updating, replaces the entire kernel at runtime.

The di�erences among these categories are shown in Figure 1.

The left part of the �gure describes a subset of the patch [77]

for CVE-2020-13974 [18], while the right part demonstrates di�er-

ent live patching schemes. A full replacement mechanism updates

the entire kernel image to adopt the change in function k_ascii.

Instruction-level patching places a trampoline at the start of the

changed instructions to redirect execution to the patch instructions.

Function-level patching works similarly, except that the trampoline

is placed at the start of function k_ascii.

Note that the patch inserts two global variables in the .bss sec-

tion, which results in the address change of the following variables
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1 --- a/drivers/tty/vt/keyboard.c

2 +++ b/drivers/tty/vt/keyboard.c

3 @@ -127,7 +127,11 @@ static DEFINE_SPINLOCK(func_buf_lock); /*
guard ’func_buf’ and friends */

4 static bool dead_key_next;

5 - static int npadch = -1;

6 +

7 + /* Handles a number being assembled on the number pad */

8 + static bool npadch_active;

9 + static unsigned int npadch_value;

10 +

11 static unsigned int diacr;

12

13 @@ -882,10 +886,12 @@ static void k_ascii(struct vc_data *vc,
unsigned char value, char up_flag)

14 base = 16;

15 }

16

17 - if (npadch == -1)

18 - npadch = value;

19 - else

20 - npadch = npadch * base + value;

21 + if (!npadch_active) {

22 + npadch_value = 0;

23 + npadch_active = true;

24 + }

25 +

26 ...

27 }

...

diacr

...

bl k_ascii
...

...
 k_ascii:

if (npadch == -1)
...

npadch_active

npadch_value

diacr

...

...
 k_ascii:

if (!npadch_active)
...

... ...
...

diacr

...

bl k_ascii
...

...
 k_ascii:

trampoline
...

...

if (!npadch_active)
 patched_inst:

npadch_value = 0

...

diacr

...

bl k_ascii
...

trampoline
 k_ascii:

if (npadch == -1)
...

...

...
 patched_func:

if (!npadch_active)
...

bl k_ascii

return

return return returnreturn

b trampoline+n
npadch_active = true

... ... ......

Not Changed
in Patching

Changed in
Patching

Orignal Layout Patch with Full
Replacement

Instruction-level
Patching

Function-level
Patching

.text

.bss

Figure 1: A Subset of Patch for CVE-2020-13974.

(e.g, diacr), as shown in the Patch with Full Replacement of Figure 1.

Therefore, any instruction referring to them need to be updated,

which presents practical challenges to existing instruction- and

function-level patching.

2.2 TrustZone Address Space Controller and
Granule Protection Table

TrustZone Address Space Controller (TZC) [4] enforces access re-

strictions between processors or peripherals and speci�c physical

memory regions. It assigns access permissions to a memory region

and restricts memory access from processors in di�erent secure

states according to the permission. For instance, a memory region

can be con�gured to permit access only from a processor running

in the secure state. However, each memory region needs to be con-

tinuous and TZC only supports up to eight regions, which limits

its �exibility.

Arm Con�dential Compute Architecture (CCA) [5] introduces

the Realm Management Extension (RME) [9] in the Armv9.2 archi-

tecture and divides the execution environment into four worlds.

The EL3 de�ned by TrustZone is now independent of Secure World

and forms Root World, which owns the highest privilege over the

system. Normal World and other parts of Secure World remain the

same as those de�ned in TrustZone. A new world named Realm

World is introduced to hold Realm VMs for con�dential computing.

To provide memory isolation among the worlds, Arm CCA intro-

duces GPT and assigns the physical memory pages to various Phys-

ical Address Spaces (PAS). The Granule Protection Check (GPC) is

performed after the address translation to validate whether access

to a memory address matches the restriction enforced by the GPT.

If the check fails, a Granule Protection Fault (GPF) is raised to block

the illegal access. To prevent manipulation, the control registers

related to GPT and GPC can only be accessed in Root World, and

the GPT itself should be in the Root PAS. According to Arm, the

TZC is expected to work with GPT instead of being replaced

by GPT in Arm CCA [85].

3 THREAT MODEL AND ASSUMPTIONS

Major Assumptions.We assume a benign but vulnerable Linux-

based hypervisor is deployed in the cloud, equipped with Arm

CCA support to provide secure VMs for cloud users. The vulnera-

ble hypervisor may be exploited by attackers, but it cannot access

the code and data inside the secure VMs due to the protection en-

forced by CCA. However, the hypervisor itself maintains critical

data that may be targeted by attackers. The attacker can modify

the hypervisor-level memory or execute payloads to gain infor-

mation from the hypervisor. She can also interfere with the live

patching process with her high privilege to prevent the exploited

vulnerabilities from being �xed. Alternatively, the attacker can pe-

riodically check whether the vulnerabilities have been repaired by

live patches and manipulate the patches if necessary.

We assume the cloud provider is trustworthy and the hypervisor

code is securely loaded, while the correctness of the patch can be

guaranteed by existing work [47, 48, 76, 81, 83, 84, 87]. The hard-

ware architecture is considered trusted. We also assume a secure

communication channel has been established between the cloud

server and a trusted machine using a dedicated Ethernet interface

or serial port, which is typically included in server machines for

maintenance purposes.

Control-Flow Integrity. Enforcing the Control-Flow Integrity

(CFI) of the hypervisor is an orthogonal research question that is

independent of the primary focus of this work. Existing mecha-

nisms [17, 29, 80, 89] normally rely on code instrumentation, which

only works for the original kernel code or veri�ed kernel modules.

However, dynamically loaded code introduced by approaches like

eBPF [24], kprobes [40] and ftrace [64] poses challenges for these

mechanisms. Attackers might exploit the legitimate usage of these

approaches to manipulate the live patches. We assume such imper-

fect CFI mechanisms are deployed in the hypervisor. It ensures that

the attacker cannot use unauthorized function pointers to mislead

the control �ow, as long as the original kernel code is executing

and its code integrity is maintained.
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Code Integrity. Similar to the issue in CFI, current code integrity

protection approaches [11, 12, 19, 30, 32] are vulnerable to the

dynamically loaded code. Typically, these mechanisms monitor

and intercept updates to the kernel page table to guarantee kernel

code integrity. However, the dynamically loaded code can introduce

code that is not monitored by these mechanisms, compromising the

guarantee of code integrity. FortifyPatch assumes that attackers

may attempt to manipulate the kernel code and kernel page table

to bypass the deployed kernel patch.

Out of Scope. The focus of this work is on protecting the live

patching process and deployed patches to prevent the exploita-

tion of known vulnerabilities. Implementing supplementary mech-

anisms (e.g., Control Flow Integrity, Data Execution Prevention,

Supervisor Mode Access Prevention, and so on) which protect the

kernel from unknown vulnerabilities used to circumvent patches,

falls under a separate topic. Additionally, the denial-of-service at-

tack may prevent the live patching process, but this would be de-

tected by FortifyPatch due to patch failure. In such a scenario,

the cloud provider may resort to a traditional patching process to

prevent further damage to the system.

4 SYSTEM DESIGN

Figure 2 shows the overview of FortifyPatch. We employ the

Patch Generation Module (§4.1) on a local machine to generate a

binary patch from the corresponding code patch. Next, the binary

patch is directly transmitted to the Root World of the cloud server

via a secure communication channel. The Patch Deployment Mod-

ule (§4.2) receives the patch and applies it to the running hypervisor.

Meantime, the Patch Protection Module (§4.3) ensures the deployed

patch would not be manipulated or bypassed with the assistance of

GPT, TZC, and PMU. Speci�cally, a multiple-GPT scheme similar

to Shelter [90] is applied to make sure the patch can be executed

at the hypervisor level without manipulation. Note that simply

reusing Shelter’s scheme leads to heavy performance overhead,

and we design speci�c policies to improve the performance (§4.5).

Moreover, to prevent bypassing of the deployed patch, we utilize

TZC to protect the integrity of the kernel code and verify the page

table for the kernel code timely via PMU interrupts. To facilitate

data access across the hypervisor and deployed patches, the Data

Proxy Module (§4.4) is also introduced.

4.1 Patch Generation Module

To avoid complicated context, FortifyPatch chooses function-level

patching following state-of-the-art solutions [14, 33, 41, 60, 74, 91].

The Patch Generation Module, situated on a local machine, is re-

sponsible for generating a binary patch from the corresponding

source code patch. To reduce the amount of human e�ort required,

we developed a patch generation tool that automates the process.

This tool automatically merges a source code patch to the hypervi-

sor source tree and compiles it to create a patched hypervisor image.

Subsequently, the binary representation of the patched global vari-

ables and functions is extracted to generate the patch. Furthermore,

the generated patch includes markers indicating the removal of

any global variables and functions. It is worth noting that binary

comparison is not required in this scenario.

Patch Generation
Module (§4.1)

EL3

EL0

.text section

  caller_func:

App
EL1

Linux-based Hypervisor

EL2

Patch Protection
Module (§4.3)

Patch Deployment
Module (§4.2)

allocated region

  buggy_func:
    smc

  patch_func:
    stp x29, x30, xx

    ret

Data Proxy
Module (§4.4)

    bl <buggy_func>

Local Machine Cloud Machine

Generation
Rules

Patch
Source Code

Hypervisor
Source Code

Secure
Channel

Guest OS
App

    ...     ...

Normal World

App
Realm OS

App...... ...

Root World

Root Memory Realm Memory

Function Call
Path

Function Return
Path

Binary
Patch

Normal Memory Read-Only
Normal Memory

Page Table

Page Table
Verification

Hardware Features
Granule

Protection Table
TrustZone Address
Space Controller

Performance
Monitor Unit

Figure 2: Overview of FortifyPatch.

4.1.1 Patch for Instructions. Once the source code patch contains

modi�cations to code inside a function, the binary patch gener-

ated by FortifyPatch includes all instructions within the function.

However, since the address of the patched function is not identical

to that of the vulnerable function after deployment, the relative

addressing inside the function is a�ected. For example, the function

might include a reference to certain variables, typically obtained by

calculating the o�set between the instruction and the data. Unfor-

tunately, the o�set is unknown during patch generation since the

memory address to place the patch has not yet been determined. To

overcome this challenge, FortifyPatch replaces these instructions

with placeholders during patch generation and completes them

before deployment, when the o�set is �xed.

4.1.2 Patch for Global Variables. The source code patch may also

modify global variables, which can lead to practical issues, as men-

tioned in C2. kpatch [33] and ksplice [60] leverage shadow vari-

able [42] to add �elds to existing data structures without changing

the data layout. However, a shadow variable is bound to an existing

object, and using it for adding a global variable would introduce

complexity in the patch code. Moreover, the shadow variable mech-

anism is not able to handle the situation that the size of a global

variable has been changed.

To address this challenge, we carefully classify the potential

global variable modi�cations and handle them accordingly.

Change in Data Value. This category only modi�es the value of

the global variable, and FortifyPatch just records the address and

new value of the variable in the patch.

Change in Data Size.When the size of a variable changes, it can

a�ect the memory layout and cause the addresses of the following

data to change. To avoid updating an overwhelming number of

references, FortifyPatch does not directly modify the original

data. Instead, we place the changed data in a separate location in

the patch generation stage.
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Inserting New Data. Similar to the process for changing data

size, newly inserted data is placed in a separate location instead of

being directly inserted into the original location. When new data is

inserted, there are typically corresponding changes to instructions

within functions referring to the inserted data. To handle these

changes, FortifyPatch replaces the references with placeholders.

Deleting Old Data. FortifyPatch simulates the variable deletion

via zeroing the corresponding memory in the hypervisor. As for

the changes to instructions related to the deleted variable, Fortify-

Patch requires no special handling since they are included in the

instruction patch.

4.2 Patch Deployment Module

The Patch Deployment Module keeps itself executing in RootWorld

for a high-security guarantee. It receives the patch generated by

the Patch Generation Module via a secure communication channel

that is only available to Root World and deploys the patch to the

running hypervisor.

4.2.1 Memory Allocation and Placeholders Substitution. When a

patch request is received, FortifyPatch leverages the vulnerable

kernel to allocate memory for the patch. The allocated physical

memory is then assigned to Root World via GPT. Next, the patch,

along with its metadata, is stored in the allocated memory. The

metadata includes information such as the address of the target

function or data and its corresponding physical address. The virtual

address assigned by the kernel is also stored as part of the metadata.

With this virtual address, the Patch Deployment Module replaces

the placeholders for data accesses that were inserted at the patch

generation stage with runtime addresses.

Note that the vulnerable kernel may manipulate the memory

allocation and return a used memory region (e.g., region for kernel

code), FortifyPatch veri�es the physical address of the allocated

memory before using it.

4.2.2 Patch Deployment. To redirect the control �ow from the vul-

nerable function to the patched version, FortifyPatch places a

trampoline at the start of the vulnerable function. For the patches

that change the value of global variables, FortifyPatch chooses

the in-place replacement strategy for simplicity and isolates it from

the hypervisor using the Patch Protection Module. Regarding the

variable changes involving memory layout change, FortifyPatch

stores the new version of the variable in the memory region allo-

cated for the patch, and the Patch Protection Module ensures that

access to the variable is redirected to the new version.

4.3 Patch Protection Module

As described inC1, the attacker owns the hypervisor-level privilege

and could compromise or bypass the applied patch. To maintain the

integrity, FortifyPatch needs to make the patch executable but

NOT writable to the potential malicious kernel. Bypassing the

patch can be achieved by replacing the trampoline or manipulating

the page table of kernel .text section, thus FortifyPatch also

focuses on protecting the kernel code and its page table.

4.3.1 Patch Integrity Protection. A recentwork [90], Shelter, presents

a multi-GPT scheme to protect user-level applications. In light of

...

diacr

...

bl k_ascii

trampoline
 k_ascii:

...

npadch_active

...
 patched_func:

if (!npadch_active)
...

return

return
...

...

...

npadch_value

Hypervisor
Code

Hypervisor
Data

Patch
Code

Patch
Data

...

diacr

...

bl k_ascii

trampoline
 k_ascii:

...

npadch_active

...
 patched_func:

if (!npadch_active)
...

return

return
...

...

...

npadch_value

...

diacr

...

bl k_ascii

trampoline
 k_ascii:

...

npadch_active

...
 patched_func:

if (!npadch_active)
...

return

return
...

...

...

npadch_value

Processor A Processor B

Executing in Hypervisor
(H.GPT Actived)

Executing in Patch
(P.GPT Actived)

Executing in Hypervisor
(H.GPT Actived)

Normal PAS Root PAS No-Access PAS

Figure 3: Multi-GPT Scheme for the Patch in Figure 1.

this design, we leverage a similar scheme to simulate the permission-

based protection required by FortifyPatch. Figure 3 demonstrates

the multi-GPT scheme for the patch in Figure 1. We prepare two

GPTs for processors in the system, and each processor dynamically

switches between the two GPTs on the �y. The Hypervisor GPT

(H.GPT) assigns the memory of the hypervisor to Normal World,

leaving the memory of the patches to Root World. This GPT is con-

�gured for hypervisor execution and guarantees the security of the

patch. The Patch GPT (P.GPT) assigns the patch memory to Normal

World while keeping hypervisor instructions in No-Access state.

This enables secure execution of patches without manipulation by

a compromised hypervisor. The Function Call Path and Function

Return Path in Figure 2 illustrate the execution path of a live patch.

At boot time, the Patch Protection Module makes all processors

use the H.GPT to ensure normal execution. When the vulnerable

function is called, the trampoline (i.e., the smc instruction) takes

the execution to the Patch Protection Module. The Patch Protec-

tion Module switches the active GPT from the H.GPT to the P.GPT

and redirects the execution to the patched function. The return of

the patched function or calls to the hypervisor functions from the

patched function leads to a GPF since the target to return or call

is not accessible under the P.GPT. The Patch Protection Module

handles the GPF and switches the active GPT back to H.GPT. By

dynamic switching between two GPTs, FortifyPatch enables the

execution of a patch at the hypervisor level while ensuring its in-

tegrity. Note that Processor B in Figure 3 represents a core that is

not executing the patched function and it keeps using H.GPT until

its execution falls to the patched function.

In a multi-processor system, each processor’s GPT can be uniden-

tical. FortifyPatch ensures that only processors executing a patch

use the P.GPT, while others work with the H.GPT. To address the

security issue caused by TLB sharing [90], the Patch Protection

Module invalidates TLB entries on GPT switches and disables the

TLB sharing once running a patch.

Note that simply reusing this multi-GPT scheme of Shelter

does not completely satisfy the live patching scenario. This

scheme places the deployed patch and the hypervisor in di�erent
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PAS, despite the fact that the patch is actually a part of the hypervi-

sor. Frequent cross-PAS data access and function calls would trigger

a large number of GPT switches and cause signi�cant performance

overhead. For instance, executing a C program with getpid() in

Shelter involves only 4 GPT switches, while running it with 10

patches in FortifyPatch would trigger more than 4 thousand GPT

switches in naive implementation. FortifyPatch solves this issue

by carefully designed performance improvement strategies, which

are discussed in §4.5.

4.3.2 Kernel Integrity and Page Table Verification. Once the kernel

code integrity is compromised, the attacker can directly manipulate

the trampoline to bypass the patch. As mentioned in §3, existing

kernel code integrity protection approaches [11, 12, 30, 32] aim to

monitor and intercept updates to the kernel code’s page table to

guarantee code integrity. These approaches would be compromised

by dynamically loaded code which is out of monitoring, and also

may introduce considerable overhead due to frequent interception.

Observing that the kernel .text section is loaded to a continu-

ous physical memory region at boot time, FortifyPatch utilizes a

single slot in TZC to mark this region as read-only to non-secure

access. This protection remains intact regardless of whether attack-

ers attempt to write the .text section directly or launch double-

mapping attacks to bypass the page table protection. Legitimate

modi�cations to the kernel code, such as kprobes, are achieved

through requests sent via an smc instruction to the Patch Protec-

tion Module, which further helps to insert the probe. To prevent

malicious usage, a whitelist is employed to verify registered probe

handlers based on code signature. The veri�ed probe handler is

then protected by GPT, similar to how patches are protected. Other

kernel trace functionalities can adopt similar protection measures

even if they do not require kernel modi�cations. To summarize, we

permit the legitimate modi�cation to the kernel code via traping

and whitelisting.

As the kernel page table can be manipulated by the attacker, she

can remap the virtual address of the kernel to a physical address

outside the protected .text region. To mitigate this issue, Fortify-

Patch adopts a lightweight veri�cation mechanism to ensure the

virtual address of the .text section is not remapped. We reserve a

counter in each processor’s PMU to monitor the write to the TTBR

register. The TTBR register indicates the base address of the page

table and is written during every process switching. Once the event

occurs a prede�ned number of times, PMU raises an over�ow inter-

rupt, which is handled in RootWorld to verify the related page table

entries for .text section. The prede�ned number helps to strike a

balance between achieving stronger security guarantees through

more frequent veri�cation and maintaining better performance by

minimizing the veri�cation process. Moreover, the VBAR register

is also veri�ed upon the interrupt to ensure the entrance of the

hypervisor is not manipulated.

4.3.3 Global Variables Protection. If a patch changes the value of a

global variable, simply replacing the value of the variable would

leave it susceptible to further manipulation. Thus, FortifyPatch

assigns the memory page containing the variable to Root World to

prevent hypervisor-level manipulation. It ensures that any hypervi-

sor access to the variable results in a GPF, which is further handled

by the Data Proxy Module.

old value 00 00 00 00

new value

Root PAS in H.GPT
Normal PAS in G.GPT

Normal PAS in Both GPTs

(a) Value Change (b) Removal

(c) Insertion

Data Page Data Page

Data Page Patch Page

Memory of the buggy variable

new value

(d) Size Change

Data Page Patch Page

old value

Figure 4: Data Proxy Overview of FortifyPatch.

As mentioned in C2, changes to a variable a�ecting the memory

layout may cause practical issues. To address this issue, Fortify-

Patch adopts di�erent mechanisms for layout changes caused by

various reasons as shown in Figure 4. To remove a variable, Forti-

fyPatch clears the corresponding memory while preserving the

addresses of other data. For variable insertion, FortifyPatch places

the variable into the memory region allocated for the patch instead

of directly inserting it into the kernel data pages. Regarding vari-

able size changes, FortifyPatch marks the data page containing

the original variable as Root World and redirects access to the new

one in the patch page. Instructions referring to these variables are

updated accordingly.

4.4 Data Proxy Module

FortifyPatch leverages the GPT to protect the patched global

variable and redirect its access to the Root World. However, because

GPT has a minimum granularity of 4KB memory pages, the scope

of protection and redirection expands to the entire memory page.

As a result, hypervisor access to other data on the same page also

leads to a GPF, which disrupts the normal execution.

To address this issue, the Data Proxy Module carefully handles

the GPF caused by access to the protected memory page and acts as

a proxy to facilitate hypervisor-level data access. Speci�cally, the

Data Proxy Module directly operates the corresponding memory

from Root World according to the instruction that caused the fault.

However, additional veri�cation applies if the hypervisor attempts

to write a variable in the patch. For variables that are not expected

to be modi�ed, the Data Proxy Module denies access and alerts the

system of potential threats. For other types of global variables in the

patch, the Data Proxy Module checks the address of the instruction

launching the memory access. Since the kernel code integrity is

guaranteed, FortifyPatch considers access from the hypervisor

.text section to be valid.

4.5 Performance Improvement

The deployment of the patch typically does not a�ect the system

performance, but the switching of the execution between the hyper-

visor and patch can sometimes slow down the system. To address

this challenge (C3) and reduce the overhead, we focus on narrowing

the performance impact from the following perspectives.

Reducing the number of traps required. In an ideal design, only

the patch functions are assigned to Normal World in the P.GPT

to prevent any potential manipulation. However, since the patch

function is actually part of the hypervisor, it involves access to the

hypervisor data, which results in frequent traps and slows down
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the system. Through serious security analysis (Detailed in §6), we

consider assigning hypervisor data to Normal World would not

weaken the overall threat model while signi�cantly reducing the

number of traps. As a result, FortifyPatch marks the hypervisor

data as Normal World in the P.GPT. To prevent security issues, the

Patch Protection Module ensures the address mapping of the patch

is not manipulated before switching to the P.GPT.

Reducing the operations in the GPT switching. To minimize

the number of operations required in the GPT switching process,

we avoid the allocation and update of GPTs at switch time. Instead,

the H.GPT and P.GPT are created in the patching process. Once a

patch is deployed, the Patch Deployment Module noti�es the Patch

Protection Module to mark the hypervisor data sections and the

patch as Normal World in the P.GPT, while keeping hypervisor

code sections as No-Access. During GPT switching, FortifyPatch

simply changes the value of GPTBR_EL3 register and �ush TLB.

Reducing the overhead of context save/restore. As explained

in §4.3.1, the switch of the execution between the hypervisor and

patch requires the switch between Normal World and Root World,

which involves context save and restore operations. In a standard

design, all 31 general-purpose registers are saved to the stack during

the context save operation, and their values are restored in context

restore. However, not all of them are required for a simple operation

like switching the GPT. Our GPF handler only uses 4 registers and

thus only these 4 registers are saved and restored during the switch.

In our experiment using a simple C program with getpid(),

these policies result in a reduction of approximately 66% in GPT

switches. Additionally, there is a decrease of over 70% in perfor-

mance overhead for each switch.

5 IMPLEMENTATION

To validate FortifyPatch’s functionality, we implement a proto-

type on the o�cial Arm simulator Fixed Virtual Platform (FVP) [8].

The o�ine patch generator is developed with C while the on-

line software stack is based on Arm Trusted Firmware-A (TF-A)

arm_cca_v0.3 [10] which supports the functionality of CCA.

PatchGenerationModule.The patch is generated from the binary

compiled from the patched hypervisor code. With system.map, we

extract the patched global variable and binary representation of

the patched function. As the patch is not placed into the original

address, the bl instructions inside the patched function are replaced

with blr instructions to overcome the branch o�set limitation. To

work with the blr instruction, four additional instructions are used

to load the address of the target function into the related register

and two more instructions are used to resume the register. A similar

procedure is applied to b instructions targeting an address outside

of the patch. For adrp instruction, the maximum encoded o�set

can be 4GB, which is su�cient for the patch. Thus, FortifyPatch

just replaces the o�set encoded in the instruction with placeholders

during patch generation.

Patch DeploymentModule. FortifyPatch redirect the execution

to the __vmalloc function to allocate page-aligned memory for

the patched function and data. The Patch Deployment Module

retrieves the physical address of the allocated memory via AT S1E2R

instructions and ensures it does not overlap with kernel code and

other patches. Next, the Patch Deployment Module replaces the

placeholders in the patch based on the virtual address allocated by

the kernel. Moreover, FortifyPatch employs the smc instruction

as the trampoline since the address mapping of this virtual address

may be manipulated.

Patch Protection Module. During boot time, we set the SCR_EL3-

.GPF bit is to trap all GPF to Root World. While handling a GPF,

we examine the ESR_EL3 to determine whether it is caused by an

instruction access. If this is the case, we verify the virtual address

encoded in ELR_EL3 with the AT S1E2R instruction to ensure that

the mapping for the patch is valid. Then, the GPT is switched by

placing the corresponding GPT base address to GPTBR_EL3.

The kernel .text section in our prototype resides in 0x80081000-

0x80a00000. We de�ne this region in TZC by �lling these addresses

to the corresponding REGION_BASE and REGION_TOP register, re-

spectively. Next, we set the REGION_ID_ACCESS.nsaid_wr_en bit

to 0 to ensure the region is read-only for Normal World.

The counter PMEVCNTR0_EL0 in each processor’s PMU is re-

served for FortifyPatch. By specifying the evtCount bit of the

register PMEVTYPER0_EL0 to 0x1c, the reserved counters moni-

tors the write to TTBR register. The counter’s initial value is set to

0xFFFFFFFFFFFFFFFF minus the prede�ned event count to ensure

it over�ows after the event occurs a speci�c number of times.We en-

able the PMUover�ow interrupt by setting PMINTENSET_EL1.P<0>

bit and route the interrupt to RootWorld by con�guring correspond-

ing GICD_IGROUPR1 registers in Arm Generic Interrupt Controller

(GIC). The page table veri�cation is achieved by con�rming the

value of 387 page table entries related to kernel .text section is not

modi�ed. After the veri�cation, FortifyPatch resets the counter

to the initial value.

Data Proxy Module. For a GPF caused by data access, we use

ELR_EL3 and FAR_EL3 to determine the address of the instruction

triggering the GPF and the address of the data being accessed,

respectively. Once we have validated the instruction address, the

Data Proxy Module simulates the data access operation. At present,

FortifyPatch has implemented the proxy for 54 variants of 12

widely used data access instructions, such as STR, LDR, and so on.

6 SECURITY ANALYSIS

The patch deployment in FortifyPatch is carried out in Root

World, which means that a hypervisor-level adversary cannot di-

rectly prevent the deployment. However, the attacker with the

hypervisor-level privilege may attempt to manipulate or bypass

the patch.

Attack on Trampoline Deployment. The trampoline instruction

is deployed to the start of a vulnerable function, but the attacker

may want to prevent the trampoline deployment by providing a

fake virtual address of the function. However, FortifyPatch locates

the vulnerable function by recording the hypervisor image load

address at boot time and directly modi�es the function via the

recorded physical address with an o�set. Alternatively, the attacker

may attempt to directly modify the deployed trampoline or use

the double mapping technique to map the hypervisor to a writable

virtual address. Since the hypervisor code is protected by TZC with

its physical address, these attempts would fail.

Attack on Patch Memory Allocation. The memory of patches is

allocated by the hypervisor. The attacker may interfere with the

memory allocation function and make it allocate an invalid or du-

plicated virtual address. However, an invalid virtual address would
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indicate a Denial-of-Service attack, which could be detected by the

Patch Deployment Module and lead to a threat alert. The duplicated

address can also be identi�ed since the Patch Deployment Module

veri�es the address after the allocation. Moreover, as the allocated

memory is then protected by GPT, the attacker can no longer access

this memory allocation.

Attack on Patch Integrity. The attacker is not able to tamper with

the patch content, which is guarded by GPT even in the scenario of a

multi-processor system. For a processor executing in the hypervisor,

the GPT used in the processor must be the H.GPT, which prevents

hypervisor-level access to the patch. For a processor running the

patch, although the patch is assigned to the Normal World by the

P.GPT, it remains in Root World from the view of other processors.

Moreover, the processor has switched to the H.GPT before the patch

calls or returns to other hypervisor functions, preventing the patch

from manipulation while executing.

Attack with Hypervisor Data Pages. As the hypervisor data

pages are marked as Normal World in the P.GPT, attackers can

change them to executable pages in the page table for manipulation.

However, direct function calls within the patch are not vulnerable

since the page table entries for the .text section is veri�ed. If the

patch involves function pointers, the attacker could manipulate

them to redirect execution. To prevent this attack, the Patch Gener-

ation Module inserts additional instructions before indirect branch

instructions to con�ne the branch target within the patch or the

hypervisor .text section.

Other Bypass Techniques. One potential approach to bypass the

patch is to manipulate the page table to remap the virtual address

of the vulnerable function or the entire kernel to a malicious copy

at a di�erent physical memory location. However, FortifyPatch

defends against this manipulation by performing timely page table

veri�cation. While there may exist a small time window for TOCT-

TOU tricks, the chances of success are low. A single failed attempt

triggers a threat alert by FortifyPatch, prompting a recommenda-

tion for a full update. Similarly, the attacker can remap the virtual

address of the patch itself, but the Patch Protection Module can

detect this before the execution enters the patch. Furthermore, the

attacker could try to redirect the control �ow by using well-crafted

callback functions for kernel trace functionalities such as kprobe

and ftrace. However, FortifyPatch restricts the usage of these func-

tionalities with a whitelist and protects the callback function from

further modi�cation after signature veri�cation. In summary, all of

these attempts would fail under the protection of FortifyPatch.

7 EVALUATION

To evaluate the functionality of FortifyPatch, we implement

a prototype on FVP Base RevC-2xAEMvA platform [8] and inte-

grate FortifyPatch to TF-A version arm_cca_v0.3 [10]. However,

as FVP is not cycle-accurate [7], we evaluate the performance of

FortifyPatch using a dedicated prototype discussed in §7.3.1. Our

evaluation focused on answering the following research questions:

RQ1: What is the size of the Trusted Computing Base (TCB) intro-

duced by FortifyPatch? (§7.1)

RQ2: Is FortifyPatch e�ective in patching CVEs? (§7.2)

RQ3: How is the performance of FortifyPatch? (§7.3)

RQ4: Would FortifyPatch a�ect the secure VMs supported by

CCA? (§7.4)

Table 1: Patch trigger count while executing benchmarks.

Each benchmark is executed 30 times with each patch and

group, and the table shows the total trigger count of 30 runs.

(a) With a Single Patch.

Index CVE sysbench Unixbench lmbench

1 CVE-2014-0196 1.50 × 10
2

5.70 × 10
2

7.20 × 10
2

2 CVE-2016-0728 0 18 2

3 CVE-2016-7916 0 2 0

4 CVE-2017-17052 1.03 × 10
3

4.91 × 10
7

1.03 × 10
5

5 CVE-2018-1095 98 2 0

6 CVE-2018-10087 1.62 × 10
3

3.97 × 10
7

1.28 × 10
5

7 CVE-2018-13405 6.87 × 10
2

6.68 × 10
6

3.48 × 10
6

8 CVE-2019-9213 8.28 × 10
2

2.23 × 10
7

2.97 × 10
4

9 CVE-2020-13974 2.41 × 10
5

2.52 × 10
6

6.07 × 10
5

10 CVE-2022-2978 1.27 × 10
4

1.17 × 10
7

3.02 × 10
6

(b) With Multiple Patches.

Group Patch Indices sysbench Unixbench lmbench

1 2, 8 8.46 × 10
2

2.23 × 10
7

2.97 × 10
4

2 2, 4, 8, 10 1.38 × 10
4

8.16 × 10
7

3.30 × 10
6

3 1, 2, 4, 7, 8, 10 1.61 × 10
4

8.68 × 10
7

5.23 × 10
6

4 1, 2, 3, 4, 7, 8, 9, 10 2.58 × 10
5

8.93 × 10
7

5.79 × 10
6

5 all 2.59 × 10
5

1.18 × 10
8

5.99 × 10
6

RQ5: How does FortifyPatch compare to state-of-the-art kernel

live patching systems? (§7.5)

7.1 RQ1: TCB Introduced by FortifyPatch

The Patch Generation Module is deployed in a local machine and

consists of 661 Line-of-Code (LoC). Since FortifyPatchworks with

the hypervisor, we do not consider the Patch Generation Module

to be part of the TCB of FortifyPatch. The other components of

FortifyPatch are located inside the TF-A, we only increased about

1.3K LoC to implement FortifyPatch while the code size of TF-A

used in our prototype includes approximately 310K LoC. Speci�-

cally, the Patch Deployment Module, Patch Protection Module, and

Data Proxy Module include 312, 350, and 696 LoC, respectively.

7.2 RQ2: E�ectiveness of FortifyPatch

To verify that FortifyPatch is capable of live patching Linux-based

hypervisor, we randomly select 2000 CVEs submitted from 2013

to 2023 in the mainline Linux kernel. The corresponding patches

are obtained from the National Vulnerability Database (NVD) web-

site [46], resulting in a total of 1, 385 identi�ed patches. However,

most of these patches are not available for our prototype since

FVP is based on 64-bit Arm architecture and only simulates limited

hardware. Speci�cally, 122 patches are not designed for 64-bit Arm

architecture, and 862 patches are related to the device drivers or

functionalities that are not supported in FVP and TF-A. Therefore,

only 401 patches can potentially work with our prototype. We man-

ually verify that 327 of them can be deployed by FortifyPatch. In

summary, if the developed patch matches the deployment platform,

FortifyPatch can deploy approximately 81.5% of the CVE patches.

The reasons why other patches could not be successfully patched

are summarized below.
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Table 2: Patch Deployment Time.

CVE
Patch Size

(in Byte)

Downtime (in `s)

Copy GPT Trampoline Total

CVE-2014-0196 1,656 275.03 0.36 1.25 276.64

CVE-2016-0728 668 119.20 0.26 1.22 120.68

CVE-2016-7916 744 126.87 0.26 1.06 128.19

CVE-2017-17052 488 90.88 0.34 1.21 92.43

CVE-2018-1095 332 57.08 0.30 1.07 58.45

CVE-2018-10087 528 92.67 0.29 1.13 94.08

CVE-2018-13405 280 55.34 0.29 1.15 56.78

CVE-2019-9213 960 165.39 0.31 1.22 166.92

CVE-2020-13974 552 104.92 0.42 1.51 106.85

CVE-2022-2978 576 103.68 0.31 1.26 105.25

Compile-time Expanding Semantics. Macros, inline functions,

and data structures are expanded at compile time, and changes to

them a�ect all functions that refer to them. In theory, updating all

these functions could achieve live patching. However, the naive

approach could lead to practical issues. We identi�ed 18 patches

involving changes to macros and inline functions, while 44 patches

are related to changes in data structures.

Make�le and Kcon�g Files. Changes to Make�le and Kcon�g

�les typically come with a large-scale code change, which makes

the impact of the patch too large for a live patching system. We

identify 9 patches in this category.

init Functions. The init functions in the kernel are placed in

the .init section. These functions are invoked only once during

boot time and then released in kernel memory free up. We identify

3 patches in this category.

In summary, if the patch matches the deployment platform, For-

tifyPatch can deploy approximately 81.5% of the CVE patches.

7.3 RQ3: Performance of FortifyPatch

7.3.1 Experiment Setup. As no real-world device with Arm CCA

support is available at this moment, we developed a performance

prototype using Raspberry PI 3B+ [61] with CPU frequency �xed at

1.4GHz to simulate FortifyPatch on the cycle-accurate platform.

Since the GPT works similarly with an additional address transla-

tion layer in MMU, the Stage-2 translation is utilized to simulate the

functionality and performance impact of GPCs. Speci�cally, we as-

sume a Linux kernel running in EL1 is a hypervisor and transplant

FortifyPatch from Root World to EL2. The Stage-2 translation

table is used to substitute the GPT in the Patch Protection Module

and also provide kernel code protection since the Raspberry PI 3B+

lacks support for TZC. To emulate the PMU over�ow interrupt, we

instrument the kernel to execute a hvc instruction upon receiving a

svc exception or writing to the TTBR register. Other modules are im-

plemented similarly to that in the FVP-based prototype. Although

the Raspberry PI does not fully support the hardware features

required by FortifyPatch, we consider it does not a�ect the per-

formance evaluation heavily since most performance overhead in

FortifyPatch is introduced by the switching of exception level

and executing instructions not related to unsupported features.

We select sysbench [45], UnixBench [51], and lmbench [52] as the

performance benchmark, as they are widely used to measure the

performance of CPU computation and intensive operations [28, 43,
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Figure 5: Performance Evaluated with Multiple Patches.

68, 89]. The con�gurations of these benchmarks are left as default.

Since the performance overhead of FortifyPatch is highly related

to the patch trigger count during the execution, we choose 10

di�erent CVE patches and make the trigger count cover di�erent

orders of magnitude. The selected CVEs are listed in the CVE column

of Table 1(a), and 1 patch involves data-related changes.

7.3.2 Downtime for Patch Deployment. Since the downtime of a

server is an important metric for a live patching system, wemeasure

the downtime required to deploy the selected CVE patches. Table 2

shows that it takes only 56.78`s for FortifyPatch to deploy a 280-

byte patch, which involves changes for a function of 18 LoC. For

a patch as large as 1, 656 bytes that changes a function of 88 LoC,

the downtime is as small as 276.64`s. The table also shows that the

downtime is primarily due to copying the patch to the reserved

memory region, while the time consumption for GPT con�guration

and trampoline deployment is negligible. Therefore, a larger patch

would result in a longer downtime. In summary, FortifyPatch

only introduces negligible microseconds of interruption, making it

well-suited for live patching scenarios.

7.3.3 Evaluation with Benchmarks. We use FortifyPatch to de-

ploy the patches discussed in §7.3.1 and execute the benchmarks

with the patches. Each experiment is repeated for 30 times. More-

over, all these benchmarks provide scores for various evaluation

metrics. We normalize the score of each metric without any patches

as 1 and show the relative score after patches are deployed. For

simplicity, we only present the overhead while deploying multiple

patches, and the overhead caused by a single patch follows similar

trends.

To learn the performance of FortifyPatchwhenmultiple patches

are deployed in the hypervisor, we randomly group the patches

in §7.3.1 and measure the performance in our experiments. The

group information and corresponding patch trigger times incurred

in the experiments are listed in Table 1(b). Figure 5 summarizes

the evaluation result with these patch groups. The lmbench con-

tains a group of metrics and we only show the metrics with the
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Figure 6: Performance Evaluated with Real-World Projects.

most signi�cant downgrade in Figure 5(c). According to the �g-

ure, the performance impact of FortifyPatch is negligible in most

metrics. However, since patches for both CVE-2017-17052 and CVE-

2019-9213 patch the functions involved in the fork process, the

fork-related experiments in lmbench introduces an overhead at

approximately 12.9%. These patches do not a�ect other metrics, and

the average performance slowdown caused by FortifyPatch is

0.98%. Note that the patch trigger count in Table 1 does not directly

re�ect the frequency of patch triggering since the time consump-

tion of the benchmarks is di�erent. Speci�cally, a single run of

sysbench, UnixBench, and lmbench costs about 5.5, 56.2, and 14.5

minutes, respectively.

7.3.4 Evaluation with Real-World Applications. To learn the impact

on real-world workloads, we use Memcached [21], Nginx [75], and

Apache [26] to simulate the memory-intensive and I/O-intensive

operations. With all patches in Table 2 deployed in the hypervisor,

we run each application with various concurrency levels, and each

experiment is repeated 30 times. Figure 6 shows the performance

overhead introduced by FortifyPatch while working with these

applications. We �nd that the concurrency level does not signi�-

cantly a�ect the performance, likely because the execution switch

introduced by FortifyPatch account for only a small percentage

of all operations of the application. The performance overhead

is approximately 1.1%, 5.5%, and 2.7% for Memcached, Nginx, and

Apache, respectively. FortifyPatch introduces heavier overhead to

Nginx due to more frequent patch triggering. The curve in Figure 6

illustrates that the patch is triggered more than 10, 000 times in

the 30-second execution of Nginx. Overall, we consider the perfor-

mance impact on real-world applications to be small.

7.4 RQ4: Compatibility of FortifyPatch

To verify that FortifyPatch does not a�ect the ability of hypervi-

sors to maintain secure VMs, we integrate FortifyPatch into an

industry-level con�dential computing prototype, Samsung Islet [67].

Islet is built on FVP with CCA support to provide con�dential com-

puting in the Realm VMs. For our experiment, we use the Islet ver-

sioned with commit bdde32c, which includes TF-A-based �rmware,

Linux-based lightweight hypervisor, Rust-based RMM, and scripts

to launch Linux-based realms. We integrate FortifyPatch into the

�rmware of Islet and launch a realm with the provided scripts. To

simulate the workload inside the realms, we make the realm run

the provided sample payload named sdk-example endlessly. Next,

we deploy the patches listed in Table 2 into the hypervisor and

manually verify whether the patch and the workload inside the

realm work as expected. The result illustrates that FortifyPatch

is able to work with Islet without interfering with each other.

7.5 RQ5: Comparing with Other Systems

We compare FortifyPatch with indicative live patching systems

including KUP [38], RapidPatch [34], kpatch [33], and KShot [91].

The result is summarized in Table 3. "Secure Patching" refers to a

manipulation-resistant patching process immune to kernel-level

attacks. Regarding "Patch Level", kernel-level patching addresses

most vulnerabilities, while instruction-level patching minimizes

patch count. Function-level patching balances downtime and patch-

ing ability. "Patch Scope" describes a live patching system capable

of e�ectively patching instructions and global data changes in a

practical way. The results in the table demonstrate that Fortify-

Patch possesses a broader patching capability while maintaining a

comparable level of performance overhead.

Functionality Comparison.While all live patching systems of-

fer basic patching functionality, only FortifyPatch is capable of

patching global variables without practical issues. In addition, both

FortifyPatch and KShot [91] provide secure patching, as the patch-

ing process cannot be controlled by privileged attackers. To the best

of our knowledge, FortifyPatch is the only live patching system

that can prevent attackers from tampering with deployed patches.

Performance Comparison. It should be noted that the systems

used for comparison are designed for di�erent architectures and

evaluated on various hardware platforms, which makes it di�cult

to make a fair comparison. Nevertheless, based on the results, it

can be observed that deploying a 1KB patch using FortifyPatch

requires moderate memory and system downtime, making it a

practical solution for patch deployment. Moreover, FortifyPatch

introduces a low overhead to protect the patches, which puts it in

a competitive position compared to state-of-the-art systems.

8 RELATED WORK

Kernel Live Patching. kpatch [33], Ksplice [60], kGraft [74], and

Linux Livepatch [41] works in a similar way and uses function-level

live patching to redirect the execution of vulnerable functions to

updated ones. KARMA [15] focuses on the Linux kernel in Android

and adaptively patches the kernel at multiple levels. RapidPatch [34]

relies on eBPF virtual machines to patch the �rmware of resource-

constrained embedded devices. Although these solutions are ca-

pable of deploying patches at runtime, they fail to guarantee the

trustworthiness of the patching procedure since they rely on kernel

functionalities that may have been manipulated due to the exposed

vulnerability. KShot [91] aims to protect the patching process using

Trusted Execution Environments (TEE), such as the x86 System

Management Model (SMM) [3] and Intel Software Guard eXtension

(SGX) [16]. However, KShot only protects the patch process and

lacks post-deployment protection.

Live Updating. KUP [38] utilizes a checkpoint-and-restart mecha-

nism to replace the Linux kernel at runtime and restore application

states after the update. VM-PHU [65] records the memory and de-

vice state of all running guest VMs before a live update and uses

kernel soft reboot to activate the updated version of the hypervisor.

However, this category of live update requires additional time and

resources to save and restore the runtime states.

Automatic Program Repair. VulRepair [27] and TransRepair [49]

are automated vulnerability repair techniques based on arti�cial

intelligence. RAP-Gen [79] utilizes an external codebase to generate
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Table 3: Comparison FortifyPatch with Other Systems. The size of the patch used is about 1KB.

System

Name

Patch

Level

Secure

Patching

Tamper

Resistance

Patch Scope
Downtime Memory Overhead

Instruction Global Data

KUP [38] kernel ✗ ✗ ✓ ✗ 2.4s/kernel 56GB /

RapidPatch [34] instruction ✗ ✗ ✓ ✗ 7.5us/23LoC 18KB 2.2%∼9.1%

kpatch [33] function ✗ ✗ ✓ ✗ 45.6ms/patch 20MB /

KShot [91] function ✓ ✗ ✓ ✗ 50`s/patch 18MB 3%

FortifyPatch function ✓ ✓ ✓ ✓ 166.92`s/patch 16MB 0.1%∼6.4%

reliable patches, while TransplantFix [86] employs graph di�erenc-

ing for patch generation. Shari�deen et al. [71] propose a patch

backporting tool to automatically transfer patches from the main-

line Linux into older versions. However, these solutions only focus

on generating source code-level patches and fail to consider the

protection of patches.

CCA-based Systems. Shelter [90] extends Arm CCA to provide a

user-level Trusted Execution Environment (TEE). By assigning the

application a dedicated GPT that prevents access from the OS kernel,

Shelter is able to protect the application fromOS-level manipulation.

However, the scheme of Shelter cannot be directly used in live

patching due to high-performance overhead. ACAI [73] enables

secure communication between con�dential VMs and accelerators

via the security guarantee provided by Arm CCA.

9 LIMITATION AND FUTUREWORK

Patch Scope. Similar to other di�erence-based live patching mech-

anisms [33, 60, 74, 91], handling the changes in macros, inline

functions, and data structures would lead to practical issues. If a

large number of functions are a�ected by the changed objects, we

suggest using the live updating approach as a supplement to refresh

the hypervisor. Moreover, shadow variables [42] are presented to

be a potential solution for adding variables to data structures.

Reducing Data Access Traps. The data access trap in Fortify-

Patch helps to solve the practical issue caused by patching global

variables. However, unnecessary traps are triggered when the hy-

pervisor accesses other variables on the same memory page. This is

due to the minimum granularity of a PAS controlled by GPT being a

4K memory page. The unnecessary trap may be reduced by a more

�ne-grained protection mechanism (e.g., Arm Memory Tagging

Extension [6]), which we leave as future work.

Consistency Issue. FortifyPatch may cause consistency issues

if other tasks are using the vulnerable function or data during the

patching process. The Linux Livepatch [41] mechanism addresses

this by employing a per-task consistency model. While the design

of FortifyPatch is compatible with this consistency model, in-

tegrating it would require additional engineering e�orts. As the

primary focus of this work is patch tamper resistance, addressing

the consistency issue is left for future work.

TOCTTOU Problem. FortifyPatch employs PMU interrupt to

initiate the veri�cation of the page table entries for kernel .text

section. This leaves a small time window for TOCTTOU attacks.

However, we consider the success rate of the attack to be low and

a single failed attempt would lead to threat alert.

CCA Security. As a newly designed solution for con�dential com-

puting, there might be undisclosed vulnerabilities within the CCA

design. Existing attacks [13, 50, 58, 62, 70, 78] to Arm TEEs may also

be used to compromise the security of CCA. However, we consider

this to be another research topic and out of the scope of this work.

Performance Impact with LLVM KCFI. While LLVM KCFI is

implemented in the kernel, we consider the overhead of Fortify-

Patch might slightly increase. Since LLVM KCFI requires loading

a function identi�er from .text section before branching to the

function, it would cause one additional GPT switch for each call

to the patch function. However, our experiments show that on

average 11.7 GPT switches are required for a patch function call

without LLVM KCFI, the additional one switch would only a�ect

the performance slightly.

Generalizability. FortifyPatch relies on a �ne-grained memory

management mechanism in a high-privilege context. Once such a

mechanism exists in other ISAs, FortifyPatch is applicable. For ex-

ample, the ongoing e�orts in the RISC-V community to implement

such a mechanism [66] o�er the potential to deploy FortifyPatch

to RISC-V architecture.

10 CONCLUSION

In this paper, we present FortifyPatch, a tamper-resistant live

patching system designed to persistently patch Linux-based hyper-

visors at runtime. FortifyPatch leverages a group of hardware

features to protect deployed patches from being manipulated or

bypassed. To address the practical issue associated with patch-

ing global variables in live patching, FortifyPatch employs well-

designed traps to minimize the number of a�ected instructions.

We implement FortifyPatch and evaluate its functionality and

performance on Arm FVP and Raspberry PI 3B+, respectively. The

evaluation indicates that FortifyPatch is capable of deploying

81.5% of CVE patches. The performance evaluation shows that For-

tifyPatch protects deployed patches with 0.98% and 3.1% overhead

on average across indicative benchmarks and real-world applica-

tions, respectively.
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