ASHMAN

A NOVEL MEMORY MANAGEMENT FOR RISC-V ENCLAVES

Haonan Li¹, Weijie Huang¹, Mingde Ren^{1,2}, Hongyi Lu¹, Zhenyu Ning¹, Heming Cui², Fengwei Zhang¹
Southern University of Science and Technology¹
The University of Hong Kong²

ENCLAVE / TEE (TRUSTED EXECUTION ENVIRONMENT)

Figure 1: TEE Overview on RISC-V

Two limitations of enclave apps:

- # of concurrent apps
- memory request

PHYSICAL MEMORY PROTECTION

Figure 3: PMP Config for Enc1

Configure for contiguous memory

limited entries, at most 16

LIMITATION 1: MULTIPLE ENCLAVES USE MULTIPLE PMP ENTRIES

on host OS: needs O(N) PMP entries Accessible Inaccessible							
	PMP_3 PMP_1						
PMP_0							
	Host OS	Enclave 1	Host OS	Enclave 2	Host OS	Enclave 3	Host OS

1) The number of concurrent enclaves is limited!

SOLUTION 1: MULTIPLE ENCLAVES USE SAME PMP ENTRY

is on host OS: needs O(1) PMP entries

Accessible Inaccessible

PMP₁

PMP₀

Host OS Enclave 1 Enc free Enclave 2 Enc free Enclave 3 Host OS

- Single PMP to cover the entire enclave memory
- "Sandwiches" can be only used for enclave

LIMITATION 2: ENCLAVE REQUESTS MEMORY

LIMITATION 2: ENCLAVE REQUESTS MEMORY

Case Study: Enclave 1 needs

➤ Case 1: requests succeed

LIMITATION 2: WHEN ENCLAVE REQUESTS MORE MEMORY

LIMITATION 2: WHEN ENCLAVE REQUESTS MORE MEMORY

- ➤ Case 2: requests fail (can only allocate 3 areas)
- Limitation: memory requests depends on others' usagimited!

 The memory request vsagimited!

MEMORY MIGRATION

Move memory to another space

SOLUTION 2: MEMORY REQUEST WITH MIGRATION

SOLUTION 2: MEMORY REQUEST WITH MIGRATION

SOLUTION 2: MEMORY REQUEST WITH MIGRATION

SOLUTION 2: MEMORY MIGRATION (CONT.)

Case Study: Enclave 1 needs

Worst case: N enclaves, request M; O(N*M) migration

SOLUTION 2: MEMORY MIGRATION (CONT.)

Case Study: Enclave 1 needs

Worst case: N enclaves, request M; O(N*M) migration

FRAGMENTATION

Allow enclave to have multiple fragments

RECALL: HOW TO RESTRICT ENCLAVES?

in on enclave: only one PMP entry needed

Accessible Inaccessible

PMP₀

Host OS Enclave 1 Host OS Enclave 2 Host OS Enclave 3 Host OS

SOLUTION 2.1: MEMORY REQUEST WITH MULTIPLE PMP ENTRIES

SOLUTION 2.1: MEMORY REQUEST WITH MULTIPLE PMP ENTRIES

Case Study: Enclave 1 needs

➤ Hint 1: allow fragmentations, make full use of PMP entries

SOLUTION 2.2: MEMORY REQUEST WITH SMALLEST FRAGMENT MIGRATION

SOLUTION 2.2: MEMORY REQUEST WITH SMALLEST FRAGMENT MIGRATION

Case Study: Enclave 1 needs

➤ Hint 2: When PMP entries run out, migrate the smallest fragment

SOLUTION 2.3: MEMORY REQUEST WITH MEMORY COMPACTION

SOLUTION 2.3: MEMORY REQUEST WITH MEMORY COMPACTION

Case Study: Enclave 1 needs

Host OS Host OS

- ➤ Hint 3: memory compaction, make the largest free space
- > But... memory compaction won't mitigate fragmentation
- ➤ Ultimate solution: compaction with merging fragmentations (future work)

RECALL: THE WHOLE PROCEDURE OF MEMORY REQUEST

EVALUATION

Memory utilization & performance

MEMORY UTILIZATION

Figure 4: Memory Utilization Rate

- $\rightarrow M_{used}/M_{pool}$
- ➤ Improve by 149%~516%

PERFORMANCE OF MEMORY ALLOCATION

Figure 5: Performance of Memory Allocation

- ➤ Compare to Linux
- Turning point: 8M

PERFORMANCE OF MIGRATION & COMPACTION

Figure 6: Performance of Memory Migration

- Migration time proportional to the size
- Memory partition: 8M
 - ① Average compaction overhead:
 - ~10 seconds for 768MB memory pool

CONCLUSION

➤ Memory management in enclaves is a problem

- ➤ Ashman tickles this problem
 - The enclave application can use memory as native applications
 - ➤ Only relies on RISC-V standard hardware
 - ➤ Overhead is low

➤ Open source: https://github.com/Compass-All/Ashman

QUESTIONS?

FOR PMP

- ➤ PMP entries up to 16
- ➤ But most boards only have 8
- For each fragments address $[2^x, 2^x + 2^y)$, then single entry, otherwise 2 entires
- ➤ SM(1), accessible range for OS(1), Only remain 6 entries to support 3 enclaves/ fragments!